login
A175584
Prime numbers p with property that sums of neighbor digits of p are all less than 10.
1
2, 3, 5, 7, 11, 13, 17, 23, 31, 41, 43, 53, 61, 71, 101, 103, 107, 109, 113, 127, 131, 151, 163, 181, 211, 223, 227, 233, 241, 251, 263, 271, 307, 311, 313, 317, 331, 353, 401, 409, 421, 431, 433, 443, 503, 509, 521, 523, 541, 601, 607, 613, 617, 631, 701, 709
OFFSET
1,1
EXAMPLE
Sum of neighbor digits of 29 = 11 > 10 hence 29 is absent.
Sum of neighbor digits 3+7 of 137 is 10 hence 137 is absent.
MATHEMATICA
s={2, 3, 5, 7}; Do[p=Prime[n]; id=IntegerDigits[p]; rp=Rest[id]+Most[id];
If[Max[rp]<10, AppendTo[s, p]], {n, 5, 300}]; s
Select[Prime[Range[150]], Max[Total/@Partition[IntegerDigits[#], 2, 1]] <10&] (* Harvey P. Dale, Dec 04 2011 *)
CROSSREFS
Cf. A175585 Sums of neighbor digits of n^2 are all less than 10.
Sequence in context: A068669 A316412 A100553 * A216823 A293199 A268812
KEYWORD
base,nonn
AUTHOR
Zak Seidov, Jul 16 2010
STATUS
approved