The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A175424 a(n) is the number of steps of iterations of {(((D_k^D_(k-1))^D_(k-2))^...)^D_1, where D_k is the k-th digit D of number r and k is the number of digits of number r in decimal expansion of r (A055642)} needed to reach a single-digit number starting at r = n, or a(n) = -1 if a single-digit number is never reached. 7
 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, -1, -1, 3, 3, 2, 1, 1, 1, 4, 3, -1, -1, 3, 3, 3, 1, 1, 2, 2, 3, 3, 3, 2, 2, 2, 1, 1, 2, 3, 2, 4, 3, 2, 3, 2, 1, 1, 3, 3, 2, 3, 3, 3, 3, 2, 1, 1, 4, 3, 3, 3, 3, 3, 2, 3, 1, 1, 3, 2, 3, 2, 3, 2, 2, 2, 1, 1, 3, 3, 3, 3, 2, 2, 2, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,25 COMMENTS Conjecture: max(a(n)) = 4. LINKS EXAMPLE For n = 33: a(33) = 4 because for the number 33 there are 4 steps of defined iteration: {3^3 = 27}, {7^2 = 49}, {9^4 = 6561}, {((1^6)^5)^6 = 1}. PROG (PARI) f(n) = if (n, my(d=digits(n), r=d[#d]); if (!vecmin(d), return(0)); forstep (k=#d-1, 1, -1, r = r^d[k]; ); r); \\ A175420 findpos(n, list) = {forstep (k=#list, 1, -1, if (list[k] == n, return (k)); ); return (0); } a(n) = {my(list = List(n), nb = 0); while (n >= 10, n = f(n); my(k=findpos(n, list)); nb++; if (k, if (k==#list-1, if (list[k]<10, return (nb), return(-1)), return(-1)); ); listput(list, n); ); return (nb); } \\ Michel Marcus, Jan 20 2022 CROSSREFS Cf. A175419, A175420, A175421, A175422, A175423, A175425, A175426, A175427. Sequence in context: A100640 A242779 A215065 * A144401 A034929 A099509 Adjacent sequences: A175421 A175422 A175423 * A175425 A175426 A175427 KEYWORD sign,base AUTHOR Jaroslav Krizek, May 09 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 3 04:55 EST 2023. Contains 360024 sequences. (Running on oeis4.)