login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A100640 Triangle read by rows: numerators of Cotesian numbers C(n,k) (0 <= k <= n). 15
0, 1, 1, 1, 2, 1, 1, 3, 3, 1, 7, 16, 2, 16, 7, 19, 25, 25, 25, 25, 19, 41, 9, 9, 34, 9, 9, 41, 751, 3577, 49, 2989, 2989, 49, 3577, 751, 989, 2944, -464, 5248, -454, 5248, -464, 2944, 989, 2857, 15741, 27, 1209, 2889, 2889, 1209, 27, 15741, 2857, 16067, 26575, -16175, 5675 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

REFERENCES

Charles Jordan, Calculus of Finite Differences, Chelsea 1965, p. 513.

L. M. Milne-Thompson, Calculus of Finite Differences, MacMillan, 1951, p. 170.

LINKS

Table of n, a(n) for n=0..58.

MAPLE

(This defines the Cotesian numbers C(n, i)) with(combinat); C:=proc(n, i) if i=0 or i=n then RETURN( (1/n!)*add(n^a*stirling1(n, a)/(a+1), a=1..n+1) ); fi; (1/n!)*binomial(n, i)* add( add( n^(a+b)*stirling1(i, a)*stirling1(n-i, b)/((b+1)*binomial(a+b+1, b+1)), b=1..n-i+1), a=1..i+1); end;

# Another program:

T:=proc(n, k) (-1)^(n-k)*(n/(n-1))*binomial(n-1, k-1)* integrate(expand(binomial(t-1, n))/(t-k), t=1..n); end;

[[1], seq( [seq(T(n, k), k=1..n)], n=2..14)];

MATHEMATICA

a[n_, i_] /; i == 0 || i == n = 1/n! Sum[n^a*StirlingS1[n, a]/(a + 1), {a, 1, n + 1}]; a[n_, i_] = 1/n!*Binomial[n, i]*Sum[ n^(a + b)*StirlingS1[i, a]*StirlingS1[n - i, b]/((b + 1)*Binomial[a + b + 1, b + 1]), {b, 1, n}, {a, 1, i + 1}]; Table[a[n, i], {n, 0, 10}, {i, 0, n}] // Flatten // Numerator //  Take[#, 59]&

(* Jean-Fran├žois Alcover, May 17 2011, after Maple prog. *)

CROSSREFS

Cf. A100641-A100648, A100620, A100621, A002177, A002176.

Sequence in context: A026009 A137171 A010356 * A242779 A215065 A175424

Adjacent sequences:  A100637 A100638 A100639 * A100641 A100642 A100643

KEYWORD

sign,frac,tabl

AUTHOR

N. J. A. Sloane, Dec 04 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 21 17:44 EST 2017. Contains 295004 sequences.