login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A175038 In the sequence of positive integers A000027, number of digits between successive primes. 2
0, 1, 1, 4, 2, 6, 2, 6, 10, 2, 10, 6, 2, 6, 10, 10, 2, 10, 6, 2, 10, 6, 10, 14, 7, 3, 9, 3, 9, 39, 9, 15, 3, 27, 3, 15, 15, 9, 15, 15, 3, 27, 3, 9, 3, 33, 33, 9, 3, 9, 15, 3, 27, 15, 15, 15, 3, 15, 9, 3, 27, 39, 9, 3, 9, 39, 15, 27, 3, 9, 15, 21, 15, 15, 9, 15, 21, 9, 21, 27, 3, 27, 3, 15, 9, 15 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

From Jamie Morken, Feb 01 2019: (Start)

For A006880(m) < n < A006880(m+1), a(n) = A046933(n)*(m + 1).

For example m=1, n=24 then a(n)=7*2=14.

For example m=2, n=26 then a(n)=1*3=3.

For n = A006880(m+1), a(n) = A046933(n)*(m+1) + A033873(m + 1).

For example m=1, n=25 then a(n)=3*2+1=7.

(End)

LINKS

Muniru A Asiru, Table of n, a(n) for n = 1..10000

EXAMPLE

a(4) = 4 as prime(4) = 7 and prime(4+1) = 11 so the number of digits between these two primes is the number of digits of 8, 9 and 10. These numbers have 4 digits combined. Therefore a(4) = 4. - David A. Corneth, Jan 30 2019

MATHEMATICA

Table[Length[Flatten[IntegerDigits/@Range[Prime[n]+1, Prime[n+1]-1]]], {n, 200}]

PROG

(PARI) a(n) = sum(k=prime(n)+1, prime(n+1)-1, #Str(k)); \\ Michel Marcus, Jan 30 2019

CROSSREFS

Cf. A000027, A113610, A046933, A006880, A033873.

Sequence in context: A205111 A236213 A016694 * A035505 A244997 A274516

Adjacent sequences:  A175035 A175036 A175037 * A175039 A175040 A175041

KEYWORD

base,nonn

AUTHOR

Zak Seidov, Nov 13 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 18 11:18 EDT 2019. Contains 326078 sequences. (Running on oeis4.)