login
A244997
Decimal expansion of the moment derivative W_4'(0) associated with the radial probability distribution of a 4-step uniform random walk.
3
4, 2, 6, 2, 7, 8, 3, 9, 8, 8, 1, 7, 5, 0, 5, 7, 9, 0, 9, 2, 3, 5, 2, 1, 4, 2, 6, 5, 9, 6, 1, 6, 6, 8, 7, 3, 0, 5, 8, 0, 0, 6, 7, 6, 9, 6, 2, 9, 6, 3, 5, 1, 0, 7, 5, 4, 1, 6, 0, 6, 4, 5, 8, 0, 2, 6, 5, 2, 9, 4, 5, 1, 2, 2, 9, 1, 1, 6, 5, 8, 1, 4, 8, 9, 1, 2, 4, 1, 8, 8, 3, 3, 2, 2, 4, 2, 9, 4, 3, 5, 8, 5, 0, 4, 8
OFFSET
0,1
LINKS
Jonathan M. Borwein, Armin Straub, James Wan, and Wadim Zudilin, Densities of Short Uniform Random Walks p. 978, Canad. J. Math. 64(2012), 961-990.
Steven R. Finch, Mathematical Constants II, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, 2018, p. 142.
FORMULA
W_4'(0) = (7/2)*zeta(3)/Pi^2.
W_4'(0) = integral over the square [0,Pi]x[0,Pi] of log(3+2*cos(x)+2*cos(y)+2*cos(x-y)) dx dy.
EXAMPLE
0.42627839881750579092352142659616687305800676962963510754160645802652945...
MATHEMATICA
RealDigits[(7/2)*Zeta[3]/Pi^2, 10, 105] // First
CROSSREFS
Cf. A244996.
Sequence in context: A016694 A175038 A035505 * A274516 A202498 A143308
KEYWORD
nonn,cons,walk
AUTHOR
STATUS
approved