

A244997


Decimal expansion of the moment derivative W_4'(0) associated with the radial probability distribution of a 4step uniform random walk.


3



4, 2, 6, 2, 7, 8, 3, 9, 8, 8, 1, 7, 5, 0, 5, 7, 9, 0, 9, 2, 3, 5, 2, 1, 4, 2, 6, 5, 9, 6, 1, 6, 6, 8, 7, 3, 0, 5, 8, 0, 0, 6, 7, 6, 9, 6, 2, 9, 6, 3, 5, 1, 0, 7, 5, 4, 1, 6, 0, 6, 4, 5, 8, 0, 2, 6, 5, 2, 9, 4, 5, 1, 2, 2, 9, 1, 1, 6, 5, 8, 1, 4, 8, 9, 1, 2, 4, 1, 8, 8, 3, 3, 2, 2, 4, 2, 9, 4, 3, 5, 8, 5, 0, 4, 8
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


LINKS

Table of n, a(n) for n=0..104.
Jonathan M. Borwein, Armin Straub, James Wan, and Wadim Zudilin, Densities of Short Uniform Random Walks p. 978, Canad. J. Math. 64(2012), 961990.


FORMULA

W_4'(0) = (7/2)*zeta(3)/Pi^2.
W_4'(0) = integral over the square [0,Pi]x[0,Pi] of log(3+2*cos(x)+2*cos(y)+2*cos(xy)) dx dy.


EXAMPLE

0.42627839881750579092352142659616687305800676962963510754160645802652945...


MATHEMATICA

RealDigits[(7/2)*Zeta[3]/Pi^2, 10, 105] // First


CROSSREFS

Cf. A244996.
Sequence in context: A016694 A175038 A035505 * A274516 A202498 A143308
Adjacent sequences: A244994 A244995 A244996 * A244998 A244999 A245000


KEYWORD

nonn,cons,walk


AUTHOR

JeanFrançois Alcover, Jul 09 2014


STATUS

approved



