login
A174793
Triangle read by rows: R(n,k) = n mod 2^Omega(k), where Omega( ) is number of prime divisors counted with multiplicity and 1 <= k <= n.
3
0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 2, 0, 2, 0, 1, 1, 3, 1, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 2, 0, 2, 0, 2, 2, 2, 0, 1, 1, 3, 1, 3, 1, 3, 3, 3, 1, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 4, 0, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 5, 1, 0, 0, 0, 2, 0, 2, 0, 6, 2, 2, 0, 6, 0, 2
OFFSET
1,19
EXAMPLE
Triangle begins
0;
0, 0;
0, 1, 1;
0, 0, 0, 0;
0, 1, 1, 1, 1;
0, 0, 0, 2, 0, 2;
MATHEMATICA
Omega[n_] := If[n<2, 0, Plus@@Transpose[FactorInteger[n]][[2]]]; Flatten[Table[Mod[n, 2^Omega[k]], {n, 15}, {k, n}]]
CROSSREFS
Sequence in context: A263485 A263489 A238660 * A245718 A192011 A152855
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved