login
A174618
For n odd a(n) = a(n-2) + a(n-3), for n even a(n) = a(n-2) + a(n-5); with a(1) = 0, a(2) = 1.
2
0, 1, 0, 1, 1, 1, 2, 1, 3, 2, 4, 4, 6, 7, 10, 11, 17, 17, 28, 27, 45, 44, 72, 72, 116, 117, 188, 189, 305, 305, 494, 493, 799, 798, 1292, 1292, 2090, 2091, 3382, 3383, 5473, 5473, 8856, 8855, 14329, 14328, 23184, 23184, 37512, 37513, 60696
OFFSET
1,7
COMMENTS
Combination a(2n)=A005252(n-1) and a(2n+1)=A024490(n). Consecutive pairs add up to A000045 and subtract to A010892. If a(1)= 1 formula gives: A103609.
FORMULA
G.f.: x^2*(1-x^2+x^3) / ( (1-x^2+x^4)*(1-x^2-x^4) ). - R. J. Mathar, Jan 27 2011
a(n) = (1/2)*(A110161(n-3) - A110161(n-2) + A079977(n-2) + A079977(n-1)). - G. C. Greubel, Oct 23 2024
EXAMPLE
As consecutive pairs: (0,1),(0,1),(1,1),(2,1),(3,2),(4,4),...
MATHEMATICA
nxt[{n_, a_, b_, c_, d_, e_}]:={n+1, b, c, d, e, If[EvenQ[n], d+c, d+a]}; NestList[nxt, {5, 0, 1, 0, 1, 1}, 50][[All, 2]] (* or *) LinearRecurrence[ {0, 2, 0, -1, 0, 0, 0, 1}, {0, 1, 0, 1, 1, 1, 2, 1}, 60] (* Harvey P. Dale, Nov 15 2019 *)
PROG
(Magma)
R<x>:=PowerSeriesRing(Integers(), 70);
[0] cat Coefficients(R!( x^2*(1-x^2+x^3)/((1-x^2+x^4)*(1-x^2-x^4)) )); // G. C. Greubel, Oct 23 2024
(SageMath)
def A174618(n): return (kronecker(12, n-3) - kronecker(12, n-2) + ((n+1)%2)*fibonacci(n//2) + (n%2)*fibonacci((n+1)//2))//2
[A174618(n) for n in range(1, 71)] # G. C. Greubel, Oct 23 2024
CROSSREFS
KEYWORD
nonn,easy,changed
AUTHOR
Mark Dols, Mar 23 2010
STATUS
approved