This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A174501 Continued fraction expansion for exp( Sum_{n>=1} 1/(n*A003499(n)) ), where A003499(n) = (3+sqrt(8))^n + (3-sqrt(8))^n. 5
 1, 4, 1, 32, 1, 196, 1, 1152, 1, 6724, 1, 39200, 1, 228484, 1, 1331712, 1, 7761796, 1, 45239072, 1, 263672644, 1, 1536796800, 1, 8957108164, 1, 52205852192, 1, 304278004996, 1, 1773462177792, 1, 10336495061764, 1, 60245508192800, 1, 351136554095044, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Colin Barker, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (0,7,0,-7,0,1). FORMULA a(2n-1) = 1, a(2n) = A003499(n) - 2, for n>=1 [conjecture]. The above conjectures are correct. See the Bala link for details. - Peter Bala, Jan 08 2013 a(n) = 7*a(n-2)-7*a(n-4)+a(n-6). G.f.: -x*(x^4+4*x^3-6*x^2+4*x+1) / ((x-1)*(x+1)*(x^2-2*x-1)*(x^2+2*x-1)). - Colin Barker, Jan 20 2013 a(n) = (((-1-sqrt(2))^n+(1-sqrt(2))^n+(sqrt(2)-1)^n+(1+sqrt(2))^n-4))/2 for n even. - Colin Barker, May 11 2016 EXAMPLE Let L = Sum_{n>=1} 1/(n*A003499(n)) or, more explicitly, L = 1/6 + 1/(2*34) + 1/(3*198) + 1/(4*1154) + 1/(5*6726) +... so that L = 0.1833074113563494600094468694966574405706183998044... then exp(L) = 1.2011836088120841844713993433258934531421726294252... equals the continued fraction given by this sequence: exp(L) = [1;4,1,32,1,196,1,1152,1,6724,1,39200,1,...]; i.e., exp(L) = 1 + 1/(4 + 1/(1 + 1/(32 + 1/(1 + 1/(196 + 1/(1 +...)))))). Compare these partial quotients to A003499(n), n=1,2,3,...: [6,34,198,1154,6726,39202,228486,1331714,7761798,45239074,...]. PROG (PARI) {a(n)=local(L=sum(m=1, 2*n+1000, 1./(m*round((3+sqrt(8))^m+(3-sqrt(8))^m)))); contfrac(exp(L))[n]} (PARI) Vec(-x*(x^4+4*x^3-6*x^2+4*x+1)/((x-1)*(x+1)*(x^2-2*x-1)*(x^2+2*x-1)) + O(x^50)) \\ Colin Barker, May 11 2016 CROSSREFS Cf. A003499, A174500, A174502. Sequence in context: A077097 A190647 A123126 * A051142 A266240 A075804 Adjacent sequences:  A174498 A174499 A174500 * A174502 A174503 A174504 KEYWORD cofr,nonn,easy AUTHOR Paul D. Hanna, Mar 20 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.