login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A174500 Continued fraction expansion for exp( Sum_{n>=1} 1/(n*A003500(n)) ), where A003500(n) = (2+sqrt(3))^n + (2-sqrt(3))^n. 30
1, 2, 1, 12, 1, 50, 1, 192, 1, 722, 1, 2700, 1, 10082, 1, 37632, 1, 140450, 1, 524172, 1, 1956242, 1, 7300800, 1, 27246962, 1, 101687052, 1, 379501250, 1, 1416317952, 1, 5285770562, 1, 19726764300, 1, 73621286642, 1, 274758382272, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Table of n, a(n) for n=1..41.

P. Bala, Some simple continued fraction expansions for an infinite product, Part 1

Index entries for linear recurrences with constant coefficients, signature (0,5,0,-5,0,1).

FORMULA

a(2n-1) = 1, a(2n) = A003500(n) - 2, for n>=1 [conjecture].

Contribution from Peter Bala, Jan 04 2013: (Start)

The above conjectures are correct. The real number exp( sum {n>=1} 1/(n*A003500(n)) ) is equal to the infinite product F(x) := product {n >= 0} (1 - x^(4*n+3))/(1 - x^(4*n+1)) evaluated at x = 2 - sqrt(3). Ramanujan has given a continued fraction expansion for F(x). Using this we can find the simple continued fraction expansion of the numbers F(1/2*(N - sqrt(N^2 - 4))), N an integer greater than 3. The present case is when N = 4. See the Bala link for details.

The theory also provides the simple continued fraction expansion of the numbers F({2 - sqrt(3)}^k), k = 1,2,3,...: if [1; c(1), 1, c(2), 1, c(3), 1, ...] denotes the present sequence then the simple continued fraction expansion of F({2 - sqrt(3)}^k) is given by [1; c(k), 1, c(2*k), 1, c(3*k), 1, ...].

(End)

a(n) = 5*a(n-2)-5*a(n-4)+a(n-6). G.f.: -x*(x^4+2*x^3-4*x^2+2*x+1) / ((x-1)*(x+1)*(x^4-4*x^2+1)). [Colin Barker, Jan 20 2013]

EXAMPLE

Let L = Sum_{n>=1} 1/(n*A003500(n)) or, more explicitly,

L = 1/4 + 1/(2*14) + 1/(3*52) + 1/(4*194) + 1/(5*724) + 1/(6*2702) +...

so that L = 0.2937696594138291094177057532058145970820225289928...

then exp(L) = 1.3414748719687236691269115428250035920032300984596...

equals the continued fraction expansion given by this sequence:

exp(L) = [1;2,1,12,1,50,1,192,1,722,1,2700,1,10082,1,...]; i.e.,

exp(L) = 1 + 1/(2 + 1/(1 + 1/(12 + 1/(1 + 1/(50 + 1/(1 +...))))).

Compare these partial quotients to A003500(n), n=1,2,3,...:

[4,14,52,194,724,2702,10084,37634,140452,524174,1956244,...].

MATHEMATICA

a[n_?OddQ] = 1; a[n_?EvenQ] := a[n] = 4*a[n-2] - a[n-4] + 4;  a[2] = 2; a[4] = 12; Table[a[n], {n, 1, 41}] (* Jean-Fran├žois Alcover, May 15 2014, after the first conjecture *)

PROG

(PARI) {a(n)=local(L=sum(m=1, 2*n+1000, 1./(m*round((2+sqrt(3))^m+(2-sqrt(3))^m)))); contfrac(exp(L))[n]}

CROSSREFS

Cf. A003500, A174501.

Sequence in context: A271531 A118588 A259633 * A249163 A287977 A288367

Adjacent sequences:  A174497 A174498 A174499 * A174501 A174502 A174503

KEYWORD

cofr,nonn,easy

AUTHOR

Paul D. Hanna, Mar 20 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified June 22 23:15 EDT 2017. Contains 288633 sequences.