login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173960
Averages of four consecutive odd squares.
5
21, 41, 69, 105, 149, 201, 261, 329, 405, 489, 581, 681, 789, 905, 1029, 1161, 1301, 1449, 1605, 1769, 1941, 2121, 2309, 2505, 2709, 2921, 3141, 3369, 3605, 3849, 4101, 4361, 4629, 4905, 5189, 5481, 5781, 6089, 6405, 6729, 7061, 7401, 7749, 8105, 8469
OFFSET
1,1
COMMENTS
The averages of four consecutive even squares are in A027575.
FORMULA
a(n) = ((2*n-1)^2 + (2*n+1)^2 + (2*n+3)^2 + (2*n+5)^2)/4 = 4*n^2 + 8*n + 9.
From Colin Barker, Apr 15 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: x*(21-22*x+9*x^2)/(1-x)^3. (End)
E.g.f.: exp(x)*(4*x^2 + 12*x + 9) - 9. - Elmo R. Oliveira, Nov 01 2024
EXAMPLE
(1^2 + 3^2 + 5^2 + 7^2)/4 = 21.
MAPLE
A173960 := proc(n) 4*n^2+8*n+9 ; end proc: seq(A173960(n), n=1..100) ; # R. J. Mathar, Mar 31 2010
MATHEMATICA
f[n_]:=(n^2+(n+2)^2+(n+4)^2+(n+6)^2)/4; Table[f[n], {n, 1, 6!, 2}]
PROG
(PARI) a(n)=4*n^2+8*n+9 \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
Cf. A027575.
Sequence in context: A261522 A215145 A154576 * A147273 A195034 A067344
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Formula corrected by R. J. Mathar, Mar 31 2010
STATUS
approved