login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A173618 Numbers k such that tau(phi(k)) = rad(k). 1
1, 4, 36, 54, 96, 200, 448, 1280, 2700, 4500, 5103, 9720, 11264, 14112, 14580, 17280, 26624, 32928, 48000, 54432, 71442, 75000, 81648, 152064, 184320, 187500, 258048, 307200, 350000, 637875, 1250235, 1344560, 1557504, 2044416, 2187500, 2367488, 3234816 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

rad(k) is the product of the primes dividing k (A007947), tau(k) is the number of divisors of k (A000005), phi(k) is the Euler totient function (A000010).

REFERENCES

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.

LINKS

Amiram Eldar, Table of n, a(n) for n = 1..100

W. Sierpinski, Number Of Divisors And Their Sum

Wikipedia, Euler's totient function

FORMULA

k such that A062821(k) = A007947(k).

EXAMPLE

phi(4) = 2, tau(2) = 2 and rad(4) = 2 phi(36) = 12, tau(12) = 6 and rad(36) = 6

MAPLE

with(numtheory):for n from 1 to 1000000 do : t1:= ifactors(n)[2] : t2 :=mul(t1[i][1], i=1..nops(t1)): if tau(phi(n))= t2 then print (n): else fi: od :

MATHEMATICA

rad[n_] := Times @@ (First@# & /@ FactorInteger[n]); Select[Range[10^5], DivisorSigma[0, EulerPhi[#]] == rad[#] &] (* Amiram Eldar, Jul 09 2019*)

PROG

(PARI) isok(k) = numdiv(eulerphi(k)) == factorback(factorint(k)[, 1]); \\ Michel Marcus, Jul 09 2019

CROSSREFS

Cf. A000005, A000010, A062069, A062821, A007947, A173326.

Sequence in context: A219247 A224094 A280934 * A091722 A053939 A167632

Adjacent sequences:  A173615 A173616 A173617 * A173619 A173620 A173621

KEYWORD

nonn,changed

AUTHOR

Michel Lagneau, Feb 22 2010

EXTENSIONS

a(30)-a(37) from Donovan Johnson, Jul 27 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 22 14:33 EDT 2019. Contains 325222 sequences. (Running on oeis4.)