login
A173326
Numbers k such that phi(tau(k)) = sopf(k).
3
4, 8, 32, 1344, 2016, 2025, 2376, 3375, 3528, 4032, 4224, 4704, 4752, 5292, 5376, 5625, 6084, 6804, 7128, 9408, 9504, 10125, 10206, 10935, 12100, 12348, 12672, 16875, 16896, 20412, 21384, 23814, 26136, 28512, 29952, 30375, 31944, 32832, 42768, 46464, 48114
OFFSET
1,1
LINKS
P. A. MacMahon, Divisors of numbers and their continuations in the theory of partitions, Proc. London Math. Soc., 19 (1919), 75-113.
FORMULA
{k: A163109(k) = A008472(k)}.
EXAMPLE
4 is in the sequence because tau(4) = 3, phi(3) = 2 and sopf(4) = 2.
8 is in the sequence because tau(8) = 4, phi(4) = 2 and sopf(8) = 2.
MAPLE
A008472 := proc(n) add(p, p= numtheory[factorset](n)) ; end proc:
A163109 := proc(n) numtheory[phi](numtheory[tau](n)) ; end proc:
for n from 1 to 40000 do if A008472(n) = A163109(n) then printf("%d, ", n); end if; end do: # R. J. Mathar, Sep 02 2011
MATHEMATICA
Select[Range[2, 50000], EulerPhi[DivisorSigma[0, #]]==Total[ Transpose[ FactorInteger[#]][[1]]]&] (* Harvey P. Dale, Nov 15 2013 *)
CROSSREFS
Cf. A000005 (tau), A000010 (phi), A008472 (sopf).
Sequence in context: A208924 A032467 A009265 * A173652 A149095 A149096
KEYWORD
nonn
AUTHOR
Michel Lagneau, Feb 16 2010
EXTENSIONS
Corrected and edited by Michel Lagneau, Apr 25 2010
STATUS
approved