This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A173389 A shifted symmetrical triangular sequence:t(n,m)=If[Mod[n, 2] == 0, Binomial[n, m], Binomial[n - 1, m - 1] + If[(n - 3)*(m - 2) >= 1, Binomial[n - 3, m - 2], 0]] 0
 1, 0, 1, 1, 2, 1, 0, 1, 2, 1, 1, 4, 6, 4, 1, 0, 1, 4, 8, 5, 1, 1, 6, 15, 20, 15, 6, 1, 0, 1, 6, 19, 26, 19, 7, 1, 1, 8, 28, 56, 70, 56, 28, 8, 1, 0, 1, 8, 34, 71, 90, 71, 34, 9, 1, 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Row sums are: {1, 1, 4, 4, 16, 19, 64, 79, 256, 319, 1024,...}. The sequence is designed to be symmetrical with every other row shifted to the right and a symmetrical term added to is so that the row sums aren't the same. LINKS FORMULA t(n,m)=If[Mod[n, 2] == 0, Binomial[n, m], Binomial[n - 1, m - 1] + If[(n - 3)*(m - 2) >= 1, Binomial[n - 3, m - 2], 0]] EXAMPLE {1}, {0, 1}, {1, 2, 1}, {0, 1, 2, 1}, {1, 4, 6, 4, 1}, {0, 1, 4, 8, 5, 1}, {1, 6, 15, 20, 15, 6, 1}, {0, 1, 6, 19, 26, 19, 7, 1}, {1, 8, 28, 56, 70, 56, 28, 8, 1}, {0, 1, 8, 34, 71, 90, 71, 34, 9, 1}, {1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1} MATHEMATICA t[n_, m_] = If[Mod[n, 2] == 0, Binomial[n, m], Binomial[n - 1, m - 1] + If[(n - 3)*(m - 2) >= 1, Binomial[n - 3, m - 2], 0]]; Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}]; Flatten[%] CROSSREFS Sequence in context: A029376 A276790 A029359 * A241062 A284620 A038698 Adjacent sequences:  A173386 A173387 A173388 * A173390 A173391 A173392 KEYWORD nonn,tabl,uned AUTHOR Roger L. Bagula, Feb 17 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 22 14:24 EST 2019. Contains 319364 sequences. (Running on oeis4.)