This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A241062 Number of partitions p of n into distinct parts such that max(p) = 1 + 2*min(p). 3
 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 2, 1, 0, 1, 2, 1, 2, 0, 1, 3, 2, 2, 2, 1, 2, 4, 4, 2, 3, 2, 3, 6, 4, 4, 6, 4, 4, 5, 6, 8, 8, 7, 6, 8, 7, 8, 12, 10, 10, 13, 12, 11, 12, 12, 14, 18, 18, 17, 18, 18, 18, 22, 20, 22, 26, 25, 28, 30, 29, 30, 32 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,11 LINKS FORMULA a(n) + A241061(n) + A241064(n) = A000009(n) for n >= 1.     a(n) = A241037(n) - A241064(n) = A207642(n) - A241061(n) for n >= 0. EXAMPLE a(10) counts these 2 partitions:  73, 532. MATHEMATICA z = 70; f[n_] := f[n] = Select[IntegerPartitions[n], Max[Length /@ Split@#] == 1 &];   Table[Count[f[n], p_ /; Max[p] < 1 + 2*Min[p]], {n, 0, z}] (* A241061 *)   Table[Count[f[n], p_ /; Max[p] <= 1 + 2*Min[p]], {n, 0, z}](* A207642 *)   Table[Count[f[n], p_ /; Max[p] == 1 + 2*Min[p]], {n, 0, z}](* A241062 *)   Table[Count[f[n], p_ /; Max[p] >= 1 + 2*Min[p]], {n, 0, z}](* A241037 *)   Table[Count[f[n], p_ /; Max[p] > 1 + 2*Min[p]], {n, 0, z}] (* A241064 *) CROSSREFS Cf. A207642, A241061, A241037, A241064, A000009. Sequence in context: A276790 A029359 A173389 * A284620 A038698 A263233 Adjacent sequences:  A241059 A241060 A241061 * A241063 A241064 A241065 KEYWORD nonn,easy AUTHOR Clark Kimberling, Apr 16 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 17 21:06 EDT 2018. Contains 313817 sequences. (Running on oeis4.)