login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173337
Numbers k>1 such that phi(phi(k))= sigma(sopf(k)).
1
40, 50, 54, 171, 195, 231, 330, 377, 387, 518, 638, 742, 745, 888, 1057, 1141, 1397, 1561, 1788, 2422, 2682, 2763, 3206, 3357, 3805, 4037, 4344, 4382, 4915, 5093, 5138, 5391, 5558, 5951, 6147, 8063, 8952, 9132, 9422, 10109, 10968, 11796, 12287, 12481
OFFSET
1,1
COMMENTS
sopf(k) is the sum of the distinct primes dividing k (without repetition): A008472), phi(k) is the Euler totient function (A000010), sigma(k) is the sum of divisors of k (A000203).
LINKS
FORMULA
k such that A010554(k)= sigma(A008472(k)).
EXAMPLE
40 is in the sequence because phi(40)= 16, phi(16) = 8, sopf(40) = 7 and sigma(7) = 8;
171 is in the sequence because phi(171) = 108, phi(108) = 36, sopf(171) = 22 and sigma(22) = 36.
MAPLE
with(numtheory) :
A008472 := proc(n)
add(p, p = factorset(n):
end proc:
isA173337 := proc(n)
phi(phi(n)) = sigma(A008472(n)) ;
end proc:
for n from 1 do
if isA173337(n) then printf("%d, ", n) ; fi;
end do: # R. J. Mathar, Jul 06 2012
MATHEMATICA
sopf[n_] := Plus @@ (First@# & /@ FactorInteger[n]); Select[Range[2, 13000], EulerPhi[EulerPhi[#]] == DivisorSigma[1, sopf[#]] &] (* Amiram Eldar, Jul 09 2019 *)
Select[Range[2, 15000], DivisorSigma[1, Total[FactorInteger[#][[All, 1]]]] == EulerPhi[ EulerPhi[#]]&] (* Harvey P. Dale, Apr 05 2020 *)
PROG
(PARI) isok(n) = (n>1) && eulerphi(eulerphi(n)) == sigma(vecsum(factor(n)[, 1])); \\ Michel Marcus, Jul 10 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Feb 16 2010
EXTENSIONS
Definition clarified by N. J. A. Sloane, Apr 05 2020
STATUS
approved