login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A173272 Positive solution of sqrt((2-x)(2+x))+sqrt((3-x)(3+x))=sqrt((2-x)(2+x))*sqrt((3-x)(3+x)). 1
1, 2, 3, 1, 1, 8, 5, 7, 2, 3, 7, 7, 8, 6, 6, 8, 8, 2, 9, 9, 6, 2, 7, 0, 5, 8, 3, 4, 7, 6, 9, 7, 8, 8, 8, 7, 4, 5, 6, 8, 6, 4, 9, 0, 2, 6, 9, 9, 7, 6, 3, 4, 9, 2, 4, 3, 4, 3, 8, 4, 6, 9, 0, 2, 8, 6, 3, 2, 7, 8, 8, 3, 5, 4, 6, 3, 6, 8, 2, 5, 8, 0, 2, 0, 7, 0, 2, 2, 0, 7, 6, 1, 3, 6, 5, 4, 2, 3, 1, 5, 7, 7, 8, 7, 3 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

x = sqrt(4-(y+1)^2) = 1.23118572... ; y = (-1 + sqrt(z-4) + sqrt(2*sqrt(4+z^2) - 2*sqrt(z-4) -z - 3))/2 = 0.57612871... with z = (5/3) + ((395/27) + sqrt(5200/27))^(1/3) + ((395/27) - sqrt(5200/27))^(1/3) = 5.63079775...

A root of the polynomial x^8-22*x^6+163*x^4-454*x^2+385. [R. J. Mathar, Feb 21 2010]

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000

EXAMPLE

1.231185723778668829962705... [R. J. Mathar, Feb 21 2010]

MAPLE

Digits := 120 ; fsolve(x^8-22*x^6+163*x^4-454*x^2+385, x, 1.1..1.3) ; # R. J. Mathar, Feb 21 2010

MATHEMATICA

Root[#^8 - 22#^6 + 163#^4 - 454#^2 + 385 &, 3] // RealDigits[#, 10, 105]& // First (* Jean-François Alcover, Feb 22 2013 *)

RealDigits[x/.FullSimplify[With[{a=Sqrt[(2-x)(2+x)], b=Sqrt[(3-x)(3+x)]}, Solve[a*b==a+b, x]]][[2]], 10, 120][[1]] (* Essentially identical to Jean- Francois Alcover's program above *) (* Harvey P. Dale, Dec 26 2014 *)

CROSSREFS

Sequence in context: A204167 A217897 A135900 * A326303 A047789 A068869

Adjacent sequences:  A173269 A173270 A173271 * A173273 A173274 A173275

KEYWORD

cons,nonn

AUTHOR

Philippe Deléham, Feb 14 2010

EXTENSIONS

More digits from R. J. Mathar, Feb 21 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 8 08:48 EDT 2020. Contains 333313 sequences. (Running on oeis4.)