login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A172249
Triangle, read by rows, given by [0,1/3,-1/3,0,0,0,0,0,0,0,...] DELTA [3,-1/3,1/3,0,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938.
0
1, 0, 3, 0, 1, 8, 0, 0, 6, 21, 0, 0, 1, 25, 55, 0, 0, 0, 9, 90, 144, 0, 0, 0, 1, 51, 300, 377, 0, 0, 0, 0, 12, 234, 954, 987, 0, 0, 0, 0, 1, 86, 951, 2939, 2584, 0, 0, 0, 0, 0, 15, 480, 3573, 8850, 6765, 0, 0, 0, 0, 0, 1, 130, 2305, 12707, 26195, 17711, 0, 0, 0, 0, 0, 0, 18, 855
OFFSET
0,3
COMMENTS
Diagonal sums : |A077897|. Column sums : A001353 .
FORMULA
T(n,k) = 3*T(n-1,k-1) + T(n-2,k-1) - T(n-2,k-2), T(0,0)=1, T(n,k) = 0 if k>n or if k<0.
Sum_{k, 0<=k<=n} T(n,k)= 3^n = A000244(n) (row sums).
G.f.: 1/(1-3*x*y-x^2*y+x^2*y^2). - R. J. Mathar, Aug 11 2015
T(n,k) = 2*Sum_{j=1..n+k} j*C(n+j,2*n-2*k+2*j)*C(n-k+j,j)/(n+j), T(0,0)=1. - Vladimir Kruchinin, Oct 28 2020
EXAMPLE
Triangle begins :
1,
0,3,
0,1,8,
0,0,6,21,
0,0,1,25,55,
0,0,0,9,90,144,
0,0,0,1,51,300,377,
0,0,0,0,12,234,954,987,
0,0,0,0,1,86,951,2939,2584,
0,0,0,0,0,15,480,3573,8850,6765,
0,0,0,0,0,1,130,2305,12707,26195,17711,
PROG
(Maxima)
T(n, k):=2*sum((j*binomial(n+j, 2*n-2*k+2*j)*binomial(n-k+j, j))/(n+j), j, 1, n+k); /* Vladimir Kruchinin_, Oct 28 2020 */
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Jan 29 2010
STATUS
approved