login
A171860
Number of n-cell fixed polycubes that are proper in n-2 dimensions.
6
0, 1, 17, 348, 8640, 254800, 8749056, 343901376, 15257600000, 755110160640, 41278242816000, 2471677136321536, 160961785787056128, 11330322120000000000, 857485369051342438400, 69444841895469240729600, 5993559601317659925282816, 549242871950650346384195584
OFFSET
2,3
REFERENCES
Gill Barequet, Solomon W. Golomb, and David A. Klarner, Polyominoes. (This is a revision, by G. Barequet, of the chapter of the same title originally written by the late D. A. Klarner for the first edition, and revised by the late S. W. Golomb for the second edition.) Preprint, 2016, http://www.csun.edu/~ctoth/Handbook/chap14.pdf
G. Barequet, M. Shalah, Automatic Proofs for Formulae Enumerating Proper Polycubes, 31st International Symposium on Computational Geometry (SoCG'15). Editors: Lars Arge and János Pach; pp. 19-22, 2015.
R. Barequet, G. Barequet, and G. Rote, Formulae and growth rates of high-dimensional polycubes, Combinatorica, 30 (2010), 257-275. See Th. 6.
LINKS
A. Asinowski, G. Barequet, R. Barequet, and G. Rote, Proper n-Cell Polycubes in n-3 Dimensions, J. Int. Seq. 15 (2012) #12.8.4.
M. Shalah, Formulae and growth rates of animals on cubical and triangular lattices, PhD Thesis, Israel Inst. Techn. (2017).
FORMULA
a(n) = 2^(n-3)*n^(n-5)*(n-2)*(2*n^2 - 6*n + 9).
PROG
(Magma) [2^(n-3)*n^(n-5)*(n-2)*(2*n^2-6*n+9): n in [2..20]]; // Vincenzo Librandi, May 26 2011
CROSSREFS
Cf. A127670, A191092, A036364 (free).
Diagonal 2 of A195739.
Sequence in context: A294435 A361096 A137246 * A324449 A191589 A194729
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Oct 16 2010
EXTENSIONS
Slightly edited by Gill Barequet, May 25 2011
STATUS
approved