login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A294435 a(n) = Sum_{m=0..n} (Sum_{k=0..m} binomial(n,k))^4. 5
1, 17, 338, 6754, 131428, 2495906, 46434532, 849488292, 15328171208, 273445276258, 4831735919236, 84688295720132, 1474133269832776, 25506505928857892, 439034457665156168, 7522356118216054216, 128364598453699389840, 2182553210810903666402, 36989251585608710893636 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Seiichi Manyama, Table of n, a(n) for n = 0..300

N. J. Calkin, A curious binomial identity, Discr. Math., 131 (1994), 335-337.

M. Hirschhorn, Calkin's binomial identity, Discr. Math., 159 (1996), 273-278.

FORMULA

a(n) ~ n * 2^(4*n - 1). - Vaclav Kotesovec, Jun 07 2019

MAPLE

A:=proc(n, k) local j; add(binomial(n, j), j=0..k); end;

S:=proc(n, p) local i; global A; add(A(n, i)^p, i=0..n); end;

[seq(S(n, 4), n=0..30)];

MATHEMATICA

Table[Sum[Sum[Binomial[n, k], {k, 0, m}]^4, {m, 0, n}], {n, 0, 15}] (* Vaclav Kotesovec, Jun 07 2019 *)

PROG

(PARI) a(n) = sum(m=0, n, sum(k=0, m, binomial(n, k))^4); \\ Michel Marcus, Nov 18 2017

CROSSREFS

Same expression with exponent b instead of 4: A001792 (b=1), A003583 (b=2), A007403 (b=3), A294435 (b=4), A294436 (b=5).

Sequence in context: A136270 A009046 A012112 * A137246 A171860 A324449

Adjacent sequences:  A294432 A294433 A294434 * A294436 A294437 A294438

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Nov 17 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 4 04:39 EDT 2020. Contains 334815 sequences. (Running on oeis4.)