login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A171503
Number of 2 X 2 integer matrices with entries from {0,1,...,n} having determinant 1.
8
0, 3, 7, 15, 23, 39, 47, 71, 87, 111, 127, 167, 183, 231, 255, 287, 319, 383, 407, 479, 511, 559, 599, 687, 719, 799, 847, 919, 967, 1079, 1111, 1231, 1295, 1375, 1439, 1535, 1583, 1727, 1799, 1895, 1959, 2119, 2167, 2335, 2415, 2511, 2599
OFFSET
0,2
COMMENTS
Number of distinct solutions to k*x+h=0, where |h|<=n and k=1,2,...,n. - Giovanni Resta, Jan 08 2013.
Number of reduced rational numbers r/s with |r|<=n and 0<s<=n. - Juan M. Marquez, Apr 13 2015
LINKS
FORMULA
Recursion: a(n) = a(n - 1) + 4*phi(n) for n > 1, with phi being Euler's totient function. - Juan M. Marquez, Jan 19 2010
a(n) = 4 * A002088(n) - 1 for n >= 1. - Robert Israel, Jun 01 2014
MAPLE
with(numtheory):
a:= proc(n) option remember;
`if`(n<2, [0, 3][n+1], a(n-1) + 4*phi(n))
end:
seq(a(n), n=0..60);
MATHEMATICA
a[n_]:=Count[Det/@(Partition[ #, 2]&/@Tuples[Range[0, n], 4]), 1]
(* Second program: *)
a[0] = 0; a[1] = 3; a[n_] := a[n] = a[n-1] + 4*EulerPhi[n];
Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Jun 16 2018 *)
PROG
(PARI) a(n)=(n>0)+2*sum(k=1, n, moebius(k)*(n\k)^2) \\ Charles R Greathouse IV, Apr 20 2015
(Python)
from functools import lru_cache
@lru_cache(maxsize=None)
def A171503(n): # based on second formula in A018805
if n == 0:
return 0
c, j = 0, 2
k1 = n//j
while k1 > 1:
j2 = n//k1 + 1
c += (j2-j)*(A171503(k1)-1)//2
j, k1 = j2, n//j2
return 2*(n*(n-1)-c+j) - 1 # Chai Wah Wu, Mar 25 2021
CROSSREFS
Cf. A062801, A000010, A018805. Differences are A002246.
See A326354 for an essentially identical sequence.
Sequence in context: A181106 A131753 A330319 * A326354 A283008 A283259
KEYWORD
nonn
AUTHOR
Jacob A. Siehler, Dec 10 2009
EXTENSIONS
Edited by Alois P. Heinz, Jan 19 2011
STATUS
approved