login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A171477
a(n) = 6*a(n-1) - 8*a(n-2) + 1 for n > 1; a(0) = 1, a(1) = 7.
6
1, 7, 35, 155, 651, 2667, 10795, 43435, 174251, 698027, 2794155, 11180715, 44731051, 178940587, 715795115, 2863245995, 11453115051, 45812722347, 183251413675, 733006703275, 2932028910251, 11728119835307, 46912487729835
OFFSET
0,2
COMMENTS
a(n) = A006095(n+2).
Second binomial transform of A168642.
Essentially partial sums of A006516.
FORMULA
a(n) = (8*4^n-6*2^n+1)/3.
G.f.: 1/((1-x)*(1-2*x)*(1-4*x)).
a(n) = A139250(2^(n+1) - 1). - Omar E. Pol, Dec 20 2012
PROG
(PARI) {m=23; v=concat([1, 7], vector(m-2)); for(n=3, m, v[n]=6*v[n-1]-8*v[n-2]+1); v}
(Magma) [(8*4^n-6*2^n+1)/3: n in [0..30]]; // Vincenzo Librandi, Jul 18 2011
CROSSREFS
Cf. A006095 (Gaussian binomial coefficient [n, 2] for q=2), A168642 ((8*2^n+(-1)^n)/3, a(0)=1), A006516 (2^(n-1)*(2^n-1)), A171472, A171473.
Sequence in context: A005285 A371964 A006095 * A265612 A005003 A243382
KEYWORD
nonn,easy
AUTHOR
Klaus Brockhaus, Dec 09 2009
STATUS
approved