login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A171089 a(n) = 2*(Lucas(n)^2 - (-1)^n)). 1
6, 4, 16, 34, 96, 244, 646, 1684, 4416, 11554, 30256, 79204, 207366, 542884, 1421296, 3720994, 9741696, 25504084, 66770566, 174807604, 457652256, 1198149154, 3136795216, 8212236484, 21499914246, 56287506244, 147362604496, 385800307234, 1010038317216 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

In Thomas Koshy's book on Fibonacci and Lucas numbers, the formula for even-indexed Lucas numbers in terms of squares of Lucas numbers (A001254) is erroneously given as L(2n) = 2L(n)^2 + 2(-1)^(n - 1) on page 404 as Identity 34.7. - Alonso del Arte, Sep 07 2010

REFERENCES

Thomas Koshy, "Fibonacci and Lucas Numbers with Applications", John Wiley and Sons, 2001.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (2,2,-1).

FORMULA

a(n) = 2*(A000032(n))^2 -2*(-1)^n.

a(n) = 2*A047946(n).

a(n) = 2*a(n-1) + 2*a(n-2) -a(n-3).

G.f.: 2*(3-4*x-2*x^2)/( (1+x)*(x^2-3*x+1) ).

a(n) = 2^(1-n)*((-2)^n+(3-sqrt(5))^n+(3+sqrt(5))^n). - Colin Barker, Oct 01 2016

MATHEMATICA

f[n_] := 2 (LucasL@n^2 - (-1)^n); Array[f, 27, 0] (* Robert G. Wilson v, Sep 10 2010 *)

CoefficientList[Series[2*(3 - 4*x - 2*x^2)/((1 + x)*(x^2 - 3*x + 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 19 2012 *)

PROG

(MAGMA) I:=[6, 4, 16]; [n le 3 select I[n] else 2*Self(n-1) + 2*Self(n-2) - Self(n-3): n in [1..30]]; // Vincenzo Librandi, Dec 19 2012

(PARI) a(n) = round(2^(1-n)*((-2)^n+(3-sqrt(5))^n+(3+sqrt(5))^n)) \\ Colin Barker, Oct 01 2016

(PARI) Vec(2*(3-4*x-2*x^2)/((1+x)*(x^2-3*x+1)) + O(x^40)) \\ Colin Barker, Oct 01 2016

CROSSREFS

Cf. A001254.

Sequence in context: A199890 A198459 A083581 * A180495 A213761 A160248

Adjacent sequences:  A171086 A171087 A171088 * A171090 A171091 A171092

KEYWORD

nonn,easy

AUTHOR

R. J. Mathar, Sep 08 2010

EXTENSIONS

a(21) onwards from Robert G. Wilson v, Sep 10 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 21 14:44 EST 2017. Contains 295002 sequences.