login
A167556
A triangle related to the GF(z) formulas of the rows of the ED1 array A167546.
5
1, 1, 2, 2, 6, 2, 6, 24, 4, 8, 24, 120, 0, 48, 24, 120, 720, -120, 384, 72, 144, 720, 5040, -1680, 3696, -432, 1296, 720, 5040, 40320, -20160, 40320, -15840, 17280, 2880, 5760, 40320, 362880, -241920, 483840, -311040, 288000, -46080, 69120, 40320
OFFSET
1,3
COMMENTS
The GF(z) formulas given below correspond to the first ten rows of the ED1 array A167546. The polynomials in their numerators lead to the triangle given above.
EXAMPLE
Row 1: GF(z) = 1/(1-z).
Row 2: GF(z) = (1 + 2*z)/(1-z)^2.
Row 3: GF(z) = (2 + 6*z + 2*z^2)/(1-z)^3.
Row 4: GF(z) = (6 + 24*z + 4*z^2 + 8*z^3)/(1-z)^4.
Row 5: GF(z) = (24 + 120*z + 0*z^2 + 48*z^3 + 24*z^4)/(1-z)^5.
Row 6: GF(z) = (120 + 720*z - 120*z^2 + 384*z^3 + 72*z^4 + 144*z^5)/ (1-z)^6.
Row 7: GF(z) = (720 + 5040*z - 1680*z^2 + 3696*z^3 - 432*z^4 + 1296*z^5 + 720*z^6)/(1-z)^7.
Row 8: GF(z) = (5040 + 40320*z - 20160*z^2 + 40320*z^3 - 15840*z^4 + 17280*z^5 + 2880*z^6 + 5760*z^7)/(1-z)^8.
Row 9: GF(z) = (40320 +362880*z -241920*z^2 + 483840*z^3 - 311040*z^4 + 288000*z^5 - 46080*z^6 + 69120*z^7 + 40320*z^8)/(1-z)^9.
Row 10: GF(z) = (362880 +3628800*z -3024000*z^2 +6289920*z^3 -5495040*z^4 + 5276160*z^5 - 2131200*z^6 + 1382400*z^7 + 201600*z^8 + 403200*z^9)/(1-z)^10;
CROSSREFS
A167546 is the ED1 array.
A000142, A000142 (n=>2) and 120*A062148 (with three extra terms at the beginning of the sequence) equal the first three left hand triangle columns.
A098557(n) and A098557(n)*A064455(n) equal the first two right hand triangle columns.
A007680 equals the row sums.
Sequence in context: A257257 A257251 A068555 * A221438 A327991 A193322
KEYWORD
sign,tabl
AUTHOR
Johannes W. Meijer, Nov 10 2009
STATUS
approved