login
A193322
Sum of even divisors of lambda(n).
3
0, 0, 2, 2, 6, 2, 8, 2, 8, 6, 12, 2, 24, 8, 6, 6, 30, 8, 26, 6, 8, 12, 24, 2, 36, 24, 26, 8, 48, 6, 48, 14, 12, 30, 24, 8, 78, 26, 24, 6, 84, 8, 64, 12, 24, 24, 48, 6, 64, 36, 30, 24, 84, 26, 36, 8, 26, 48, 60, 6, 144, 48, 8, 30, 24, 12, 96, 30, 24, 24, 96, 8, 182, 78, 36, 26, 48, 24, 112, 6, 80, 84, 84, 8, 30, 64
OFFSET
1,3
COMMENTS
Lambda is the function in A002322.
LINKS
FORMULA
a(n) = A146076(A002322(n)). - Michel Marcus, Mar 18 2016
EXAMPLE
a(17) = 30 because lambda(17) = 16 and the sum of the 4 even divisors { 2, 4, 8, 16} is 30.
MATHEMATICA
Table[Total[Select[Divisors[CarmichaelLambda[n]], EvenQ[ # ]&]], {n, 62}]
(* Second program: *)
Array[DivisorSum[CarmichaelLambda@ #, # &, EvenQ] &, 86] (* Michael De Vlieger, Dec 04 2017 *)
PROG
(PARI) a(n) = sumdiv(lcm(znstar(n)[2]), d, d*(1-(d%2))); \\ Michel Marcus, Mar 18 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Jul 22 2011
EXTENSIONS
More terms from Antti Karttunen, Dec 04 2017
STATUS
approved