login
A166314
Number of 1's in binary expansion of A000124(n).
1
1, 1, 1, 3, 3, 1, 3, 4, 3, 4, 3, 3, 5, 4, 4, 5, 3, 4, 4, 7, 5, 4, 7, 4, 5, 4, 3, 7, 6, 5, 5, 6, 3, 4, 4, 7, 6, 3, 6, 5, 6, 7, 4, 7, 9, 3, 5, 5, 5, 5, 7, 7, 6, 5, 7, 4, 7, 7, 5, 8, 7, 6, 6, 7, 3, 4, 4, 7, 6, 5, 7, 9, 5, 6, 6, 6, 9, 8, 4, 6, 6, 8, 6, 9, 9, 5, 8, 9, 8, 8, 1, 6, 7, 4, 6, 6, 5, 5, 7, 8, 9, 3, 5, 8, 7
OFFSET
0,4
FORMULA
a(n) = A000120(A000124(n)). - Michel Marcus, May 05 2019
MAPLE
read("transforms") ;
A166314 := proc(n) wt(A000124(n)) ; end:
A000124 := proc(n) n*(n+1)/2+1 ; end: seq(A166314(n), n=0..80) ; # R. J. Mathar, Oct 14 2009
MATHEMATICA
Clear[lst, n, s, f, i] f[n_]:=Plus@@IntegerDigits[n, 2]; i=1; s=1; lst={i}; Do[s+=n+i; If[s>=0, AppendTo[lst, f[s]]], {n, 0, 6!, 1}]; lst
CROSSREFS
Sequence in context: A161200 A214747 A110766 * A109630 A201439 A202511
KEYWORD
nonn,base,easy
AUTHOR
EXTENSIONS
Definition shortened, offset set to zero by R. J. Mathar, Oct 14 2009
STATUS
approved