login
A165672
Primes p such that (p^2+2)/33 is prime.
3
19, 47, 107, 151, 173, 179, 349, 487, 547, 569, 641, 701, 883, 971, 1009, 1097, 1213, 1361, 1493, 1559, 1873, 1889, 1933, 2269, 2351, 2357, 2423, 2797, 2819, 2879, 3259, 3347, 3391, 3457, 3539, 3583, 4051, 4139, 4177, 4799, 4969, 5437, 6091, 6163, 6427
OFFSET
1,1
COMMENTS
For (p^2+2)/33 to be an integer, p must be congruent to 8, 14, 19, or 25 (mod 33). Examples: 107 = 8, 47 = 14, 19 = 19, and 487 = 25 (mod 33). [From Michael B. Porter, Oct 20 2009]
LINKS
EXAMPLE
p=19: (19^2+2)/33=11; p=47: (47^2+2)/33=67; p=107: (107^2+2)/33=347
MATHEMATICA
Select[Prime[Range[1000]], PrimeQ[(#^2+2)/33]&] (* Harvey P. Dale, Feb 18 2012 *)
CROSSREFS
KEYWORD
nonn,less
AUTHOR
Vincenzo Librandi, Sep 24 2009
EXTENSIONS
Corrected and extended by Charles R Greathouse IV, Oct 09 2009
STATUS
approved