|
MATHEMATICA
|
a[n_] := SymmetricPolynomial[n - 1, t[n]]; z = 10;
t[n_] := Table[k - 1, {k, 1, n}];
t1 = Table[a[n], {n, 1, z}] (* A000142 *)
t[n_] := Table[k, {k, 1, n}];
t2 = Table[a[n], {n, 1, z}] (* A000254 *)
t[n_] := Table[k + 1, {k, 1, n}];
t3 = Table[a[n], {n, 1, z}] (* A001705 *)
t[n_] := Table[k + 2, {k, 1, n}];
t4 = Table[a[n], {n, 1, z}] (* A001711 *)
t[n_] := Table[k + 3, {k, 1, n}];
t5 = Table[a[n], {n, 1, z}] (* A001716 *)
t[n_] := Table[k + 4, {k, 1, n}];
t6 = Table[a[n], {n, 1, z}] (* A001721 *)
t[n_] := Table[k + 5, {k, 1, n}];
t7 = Table[a[n], {n, 1, z}] (* A051524 *)
t[n_] := Table[k + 6, {k, 1, n}];
t8 = Table[a[n], {n, 1, z}] (* A051545 *)
t[n_] := Table[k + 7, {k, 1, n}];
t9 = Table[a[n], {n, 1, z}] (* A051560 *)
t[n_] := Table[k + 8, {k, 1, n}];
t10 = Table[a[n], {n, 1, z}] (* A051562 *)
t[n_] := Table[k + 9, {k, 1, n}];
t11 = Table[a[n], {n, 1, z}] (* A051564 *)
t[n_] := Table[k + 10, {k, 1, n}];
t12 = Table[a[n], {n, 1, z}] (* A203147 *)
t = {t1, t2, t3, t4, t5, t6, t7, t8, t9, t10}; TableForm[t] (* A165675 in square format *)
m[i_, j_] := t[[i]][[j]]
Flatten[Table[m[i, n + 1 - i], {n, 1, 10},
{i, 1, n}]] (* A165675 as a sequence *)
(* Clark Kimberling, Dec 29 2011 *)
|