login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A165533
Number of permutations of length n which avoid the patterns 4213 and 1432.
1
1, 1, 2, 6, 22, 87, 352, 1434, 5861, 24019, 98677, 406291, 1676009, 6924618, 28646875, 118638038, 491765865, 2039944740, 8467475533, 35166107745, 146115418937, 607353499821, 2525443862594, 10504254304765, 43702642447260, 181865873468907, 756979080521743, 3151341504417932
OFFSET
0,3
LINKS
Darla Kremer and Wai Chee Shiu, Finite transition matrices for permutations avoiding pairs of length four patterns, Discrete Math. 268 (2003), 171-183. MR1983276 (2004b:05006). See Table 1.
Sam Miner, Enumeration of several two-by-four classes, arXiv:1610.01908 [math.CO], 2016.
FORMULA
G.f.: 1 + x*(1 - x)*(1 - 2*x)*(1 - 7*x + 17*x^2 - 16*x^3 + 4*x^4 + (1 - 3*x + 3*x^2)*sqrt(1 - 4*x))/(2 - 22*x + 96*x^2 - 220*x^3 + 282*x^4 - 196*x^5 + 64*x^6 - 8*x^7). - G. C. Greubel, Oct 22 2018
EXAMPLE
There are 22 permutations of length 4 which avoid these two patterns, so a(4)=22.
MATHEMATICA
CoefficientList[Series[1 + x*(1 - x)*(1 - 2*x)*(1 - 7*x + 17*x^2 - 16*x^3 + 4*x^4 + (1 - 3*x + 3*x^2)*Sqrt[1 - 4*x])/(2 - 22*x + 96*x^2 - 220*x^3 + 282*x^4 - 196*x^5 + 64*x^6 - 8*x^7), {x, 0, 50}], x] (* G. C. Greubel, Oct 22 2018 *)
PROG
(PARI) x='x+O('x^50); Vec(1 + x*(1-x)*(1-2*x)*(1-7*x+17*x^2-16*x^3+4*x^4 + (1-3*x+3*x^2)*sqrt(1-4*x))/(2-22*x+96*x^2-220*x^3+282*x^4-196*x^5 + 64*x^6-8*x^7)) \\ G. C. Greubel, Oct 22 2018
(Magma) m:=50; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!(1 + x*(1-x)*(1-2*x)*(1-7*x+17*x^2-16*x^3+4*x^4 +(1-3*x + 3*x^2)*Sqrt(1 - 4*x))/(2-22*x+96*x^2-220*x^3+282*x^4-196*x^5+64*x^6-8*x^7))); // G. C. Greubel, Oct 22 2018
CROSSREFS
Sequence in context: A374542 A150260 A165532 * A164651 A279566 A367413
KEYWORD
nonn
AUTHOR
Vincent Vatter, Sep 21 2009
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Dec 09 2015
a(13)-a(15) from Lars Blomberg, Apr 26 2018
Terms a(16) onward added by G. C. Greubel, Oct 22 2018
STATUS
approved