Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Sep 08 2022 08:45:48
%S 1,1,2,6,22,87,352,1434,5861,24019,98677,406291,1676009,6924618,
%T 28646875,118638038,491765865,2039944740,8467475533,35166107745,
%U 146115418937,607353499821,2525443862594,10504254304765,43702642447260,181865873468907,756979080521743,3151341504417932
%N Number of permutations of length n which avoid the patterns 4213 and 1432.
%H G. C. Greubel, <a href="/A165533/b165533.txt">Table of n, a(n) for n = 0..1000</a>
%H Darla Kremer and Wai Chee Shiu, <a href="http://dx.doi.org/10.1016/S0012-365X(03)00042-6">Finite transition matrices for permutations avoiding pairs of length four patterns</a>, Discrete Math. 268 (2003), 171-183. MR1983276 (2004b:05006). See Table 1.
%H Sam Miner, <a href="https://arxiv.org/abs/1610.01908">Enumeration of several two-by-four classes</a>, arXiv:1610.01908 [math.CO], 2016.
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Enumerations_of_specific_permutation_classes#Classes_avoiding_two_patterns_of_length_4">Permutation classes avoiding two patterns of length 4</a>.
%F G.f.: 1 + x*(1 - x)*(1 - 2*x)*(1 - 7*x + 17*x^2 - 16*x^3 + 4*x^4 + (1 - 3*x + 3*x^2)*sqrt(1 - 4*x))/(2 - 22*x + 96*x^2 - 220*x^3 + 282*x^4 - 196*x^5 + 64*x^6 - 8*x^7). - _G. C. Greubel_, Oct 22 2018
%e There are 22 permutations of length 4 which avoid these two patterns, so a(4)=22.
%t CoefficientList[Series[1 + x*(1 - x)*(1 - 2*x)*(1 - 7*x + 17*x^2 - 16*x^3 + 4*x^4 + (1 - 3*x + 3*x^2)*Sqrt[1 - 4*x])/(2 - 22*x + 96*x^2 - 220*x^3 + 282*x^4 - 196*x^5 + 64*x^6 - 8*x^7), {x, 0, 50}], x] (* _G. C. Greubel_, Oct 22 2018 *)
%o (PARI) x='x+O('x^50); Vec(1 + x*(1-x)*(1-2*x)*(1-7*x+17*x^2-16*x^3+4*x^4 + (1-3*x+3*x^2)*sqrt(1-4*x))/(2-22*x+96*x^2-220*x^3+282*x^4-196*x^5 + 64*x^6-8*x^7)) \\ _G. C. Greubel_, Oct 22 2018
%o (Magma) m:=50; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!(1 + x*(1-x)*(1-2*x)*(1-7*x+17*x^2-16*x^3+4*x^4 +(1-3*x + 3*x^2)*Sqrt(1 - 4*x))/(2-22*x+96*x^2-220*x^3+282*x^4-196*x^5+64*x^6-8*x^7))); // _G. C. Greubel_, Oct 22 2018
%K nonn
%O 0,3
%A _Vincent Vatter_, Sep 21 2009
%E a(0)=1 prepended by _Alois P. Heinz_, Dec 09 2015
%E a(13)-a(15) from _Lars Blomberg_, Apr 26 2018
%E Terms a(16) onward added by _G. C. Greubel_, Oct 22 2018