login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A164411
Number of binary strings of length n with no substrings equal to 0000, 0001, or 0110.
1
1, 2, 4, 8, 13, 22, 37, 63, 108, 184, 314, 535, 912, 1555, 2651, 4520, 7706, 13138, 22399, 38188, 65107, 111001, 189246, 322646, 550080, 937833, 1598914, 2725993, 4647553, 7923626, 13509012, 23031552, 39266557, 66945662, 114135845, 194590519
OFFSET
0,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 4..500 from R. H. Hardin)
FORMULA
G.f.: (1 + x + x^2 + 2*x^3 + x^4)/(1 - x - x^2 - x^5). - R. J. Mathar, Nov 30 2011
MATHEMATICA
LinearRecurrence[{1, 1, 0, 0, 1}, {1, 2, 4, 8, 13}, 50] (* G. C. Greubel, Sep 19 2017 *)
CoefficientList[Series[(1 + x + x^2 + 2*x^3 + x^4)/(1 - x - x^2 - x^5), {x, 0, 50}], x] (* G. C. Greubel, Sep 21 2017 *)
PROG
(PARI) x='x+O('x^50); Vec((1 + x + x^2 + 2*x^3 + x^4)/(1 - x - x^2 - x^5)) \\ G. C. Greubel, Sep 21 2017
CROSSREFS
Sequence in context: A164428 A164507 A164414 * A164443 A074467 A018066
KEYWORD
nonn
AUTHOR
R. H. Hardin, Aug 14 2009
STATUS
approved