The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A164411 Number of binary strings of length n with no substrings equal to 0000, 0001, or 0110. 1

%I

%S 1,2,4,8,13,22,37,63,108,184,314,535,912,1555,2651,4520,7706,13138,

%T 22399,38188,65107,111001,189246,322646,550080,937833,1598914,2725993,

%U 4647553,7923626,13509012,23031552,39266557,66945662,114135845,194590519

%N Number of binary strings of length n with no substrings equal to 0000, 0001, or 0110.

%H G. C. Greubel, <a href="/A164411/b164411.txt">Table of n, a(n) for n = 0..1000</a> (terms 4..500 from R. H. Hardin)

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,0,0,1).

%F G.f.: (1 + x + x^2 + 2*x^3 + x^4)/(1 - x - x^2 - x^5). - _R. J. Mathar_, Nov 30 2011

%t LinearRecurrence[{1,1,0,0,1}, {1, 2, 4, 8, 13}, 50] (* _G. C. Greubel_, Sep 19 2017 *)

%t CoefficientList[Series[(1 + x + x^2 + 2*x^3 + x^4)/(1 - x - x^2 - x^5), {x, 0, 50}], x] (* _G. C. Greubel_, Sep 21 2017 *)

%o (PARI) x='x+O('x^50); Vec((1 + x + x^2 + 2*x^3 + x^4)/(1 - x - x^2 - x^5)) \\ _G. C. Greubel_, Sep 21 2017

%K nonn

%O 0,2

%A _R. H. Hardin_, Aug 14 2009

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 20:49 EST 2021. Contains 349435 sequences. (Running on oeis4.)