%I
%S 1,2,4,8,13,22,37,63,108,184,314,535,912,1555,2651,4520,7706,13138,
%T 22399,38188,65107,111001,189246,322646,550080,937833,1598914,2725993,
%U 4647553,7923626,13509012,23031552,39266557,66945662,114135845,194590519
%N Number of binary strings of length n with no substrings equal to 0000, 0001, or 0110.
%H G. C. Greubel, <a href="/A164411/b164411.txt">Table of n, a(n) for n = 0..1000</a> (terms 4..500 from R. H. Hardin)
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,0,0,1).
%F G.f.: (1 + x + x^2 + 2*x^3 + x^4)/(1  x  x^2  x^5).  _R. J. Mathar_, Nov 30 2011
%t LinearRecurrence[{1,1,0,0,1}, {1, 2, 4, 8, 13}, 50] (* _G. C. Greubel_, Sep 19 2017 *)
%t CoefficientList[Series[(1 + x + x^2 + 2*x^3 + x^4)/(1  x  x^2  x^5), {x, 0, 50}], x] (* _G. C. Greubel_, Sep 21 2017 *)
%o (PARI) x='x+O('x^50); Vec((1 + x + x^2 + 2*x^3 + x^4)/(1  x  x^2  x^5)) \\ _G. C. Greubel_, Sep 21 2017
%K nonn
%O 0,2
%A _R. H. Hardin_, Aug 14 2009
