OFFSET
0,2
COMMENTS
Also a(n) = Sum_{i=0..n} binomial(n,n-i) (2*i+1)$ where i$ denotes the swinging factorial of i (A056040).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..300
Peter Luschny, Die schwingende Fakultät und Orbitalsysteme, August 2011.
Peter Luschny, Swinging Factorial.
FORMULA
From Vaclav Kotesovec, Oct 21 2012: (Start)
G.f.: -sqrt(x-1)/(5*x-1)^(3/2).
Recurrence: n*a(n) = (6*n+1)*a(n-1) - 5*(n-1)*a(n-2).
a(n) ~ 4*5^(n-1/2)*sqrt(n)/sqrt(Pi).
(End)
a(n) = hypergeom([3/2, -n], [1], -4) = hypergeom([3/2, n+1], [1], 4/5)/(5*sqrt(5)). - Vladimir Reshetnikov, Apr 25 2016
E.g.f.: exp(3*x) * ((1 + 4*x) * BesselI(0,2*x) + 4 * x * BesselI(1,2*x)). - Ilya Gutkovskiy, Nov 19 2021
MAPLE
a := proc(n) local i; add(binomial(n, i)/Beta(i+1, i+1), i=0..n) end:
MATHEMATICA
CoefficientList[Series[-Sqrt[x-1]/(5*x-1)^(3/2), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 21 2012 *)
sf[n_] := With[{f = Floor[n/2]}, Pochhammer[f+1, n-f]/f!]; a[n_] := Sum[ Binomial[n, n-i]*sf[2*i+1], {i, 0, n}]; Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Jul 26 2013 *)
Table[Hypergeometric2F1[3/2, -n, 1, -4], {n, 0, 20}] (* Vladimir Reshetnikov, Apr 25 2016 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Aug 06 2009
STATUS
approved