login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A163872 Inverse binomial transform of the beta numbers 1/beta(n+1,n+1) (A002457). 2
1, 5, 19, 67, 227, 751, 2445, 7869, 25107, 79567, 250793, 786985, 2460397, 7667921, 23832931, 73902627, 228692115, 706407903, 2178511449, 6708684009, 20632428249, 63380014845, 194486530791, 596213956023, 1826103432573, 5588435470401, 17089296473655 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Also a(n) = sum {i=0..n} (-1)^(n-i) binomial(n,n-i) (2*i+1)$ where i$ denotes the swinging factorial of i (A056040).

REFERENCES

Peter Luschny, "Divide, swing and conquer the factorial and the lcm{1,2,...,n}", preprint, April 2008.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..300

Peter Luschny, Swinging Factorial.

FORMULA

O.g.f.: A(x)=1/(1-x*M(x))^3, M(x) - o.g.f. of A001006. a(n) = sum(k^3/n *sum(C(n,j)*C(j,2*j-n-k), j=0..n), k=1..n). - Vladimir Kruchinin, Sep 06 2010

Recurrence: n*a(n) = (2*n+3)*a(n-1) + 3*(n-1)*a(n-2). - Vaclav Kotesovec, Oct 21 2012

a(n) ~ 4*3^(n-1/2)*sqrt(n)/sqrt(Pi). - Vaclav Kotesovec, Oct 21 2012

a(n) = (-1)^n*hypergeom([-n,3/2], [1], 4). - Peter Luschny, Apr 26 2016

MAPLE

a := proc(n) local i; add((-1)^(n-i)*binomial(n, i)/Beta(i+1, i+1), i=0..n) end:

seq(simplify((-1)^n*hypergeom([-n, 3/2], [1], 4)), n=0..26); # Peter Luschny, Apr 26 2016

MATHEMATICA

CoefficientList[Series[Sqrt[x+1]/(1-3*x)^(3/2), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 21 2012 *)

sf[n_] := With[{f = Floor[n/2]}, Pochhammer[f+1, n-f]/f!]; a[n_] := Sum[(-1)^(n-i)*Binomial[n, n-i]*sf[2*i+1], {i, 0, n}]; Table[a[n], {n, 0, 26}] (* Jean-Fran├žois Alcover, Jul 26 2013 *)

CROSSREFS

Cf. A163772.

Sequence in context: A067325 A273599 A121525 * A035344 A114277 A104496

Adjacent sequences:  A163869 A163870 A163871 * A163873 A163874 A163875

KEYWORD

nonn

AUTHOR

Peter Luschny, Aug 06 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 27 06:50 EDT 2017. Contains 284144 sequences.