The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A163872 Inverse binomial transform of the beta numbers 1/beta(n+1,n+1) (A002457). 2
 1, 5, 19, 67, 227, 751, 2445, 7869, 25107, 79567, 250793, 786985, 2460397, 7667921, 23832931, 73902627, 228692115, 706407903, 2178511449, 6708684009, 20632428249, 63380014845, 194486530791, 596213956023, 1826103432573, 5588435470401, 17089296473655 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Also a(n) = sum {i=0..n} (-1)^(n-i) binomial(n,n-i) (2*i+1)\$ where i\$ denotes the swinging factorial of i (A056040). LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..300 Peter Luschny, Die schwingende Fakultät und Orbitalsysteme, August 2011. Peter Luschny, Swinging Factorial. FORMULA O.g.f.: A(x)=1/(1-x*M(x))^3, M(x) - o.g.f. of A001006. a(n) = sum(k^3/n *sum(C(n,j)*C(j,2*j-n-k), j=0..n), k=1..n). - Vladimir Kruchinin, Sep 06 2010 Recurrence: n*a(n) = (2*n+3)*a(n-1) + 3*(n-1)*a(n-2). - Vaclav Kotesovec, Oct 21 2012 a(n) ~ 4*3^(n-1/2)*sqrt(n)/sqrt(Pi). - Vaclav Kotesovec, Oct 21 2012 a(n) = (-1)^n*hypergeom([-n,3/2], [1], 4). - Peter Luschny, Apr 26 2016 MAPLE a := proc(n) local i; add((-1)^(n-i)*binomial(n, i)/Beta(i+1, i+1), i=0..n) end: seq(simplify((-1)^n*hypergeom([-n, 3/2], [1], 4)), n=0..26); # Peter Luschny, Apr 26 2016 MATHEMATICA CoefficientList[Series[Sqrt[x+1]/(1-3*x)^(3/2), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 21 2012 *) sf[n_] := With[{f = Floor[n/2]}, Pochhammer[f+1, n-f]/f!]; a[n_] := Sum[(-1)^(n-i)*Binomial[n, n-i]*sf[2*i+1], {i, 0, n}]; Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Jul 26 2013 *) CROSSREFS Cf. A163772. Sequence in context: A067325 A273599 A121525 * A035344 A114277 A104496 Adjacent sequences:  A163869 A163870 A163871 * A163873 A163874 A163875 KEYWORD nonn AUTHOR Peter Luschny, Aug 06 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 27 19:07 EST 2021. Contains 340479 sequences. (Running on oeis4.)