login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A163772 Triangle interpolating the swinging factorial (A056040) restricted to odd indices with its binomial inverse. 5
1, 5, 6, 19, 24, 30, 67, 86, 110, 140, 227, 294, 380, 490, 630, 751, 978, 1272, 1652, 2142, 2772, 2445, 3196, 4174, 5446, 7098, 9240, 12012, 7869, 10314, 13510, 17684, 23130, 30228, 39468, 51480 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Triangle read by rows. For n >= 0, k >= 0 let

T(n,k) = Sum_{i=k..n} (-1)^(n-i)*binomial(n-k,n-i)*(2i+1)$  where i$ denotes the swinging factorial of i (A056040).

LINKS

G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened

Peter Luschny, Die schwingende Fakultät und Orbitalsysteme, August 2011.

Peter Luschny, Swinging Factorial.

M. Z. Spivey and L. L. Steil, The k-Binomial Transforms and the Hankel Transform, J. Integ. Seqs. Vol. 9 (2006), #06.1.1.

EXAMPLE

1

5, 6

19, 24, 30

67, 86, 110, 140

227, 294, 380, 490, 630

751, 978, 1272, 1652, 2142, 2772

2445, 3196, 4174, 5446, 7098, 9240, 12012

MAPLE

For the functions 'DiffTria' and 'swing' see A163770. Computes n rows of the triangle.

a := n -> DiffTria(k->swing(2*k+1), n, true);

MATHEMATICA

sf[n_] := n!/Quotient[n, 2]!^2; t[n_, k_] := Sum[ (-1)^(n-i)*Binomial[n-k, n-i]*sf[2*i+1], {i, k, n}]; Table[t[n, k], {n, 0, 7}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 28 2013 *)

CROSSREFS

Row sums are A163775. Cf. A056040, A163650, A163771, A163772, A002426, A000984.

Sequence in context: A240400 A031448 A290254 * A056509 A129722 A133608

Adjacent sequences:  A163769 A163770 A163771 * A163773 A163774 A163775

KEYWORD

nonn,tabl

AUTHOR

Peter Luschny, Aug 05 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 27 18:57 EST 2021. Contains 340479 sequences. (Running on oeis4.)