login
A163772
Triangle interpolating the swinging factorial (A056040) restricted to odd indices with its binomial inverse.
5
1, 5, 6, 19, 24, 30, 67, 86, 110, 140, 227, 294, 380, 490, 630, 751, 978, 1272, 1652, 2142, 2772, 2445, 3196, 4174, 5446, 7098, 9240, 12012, 7869, 10314, 13510, 17684, 23130, 30228, 39468, 51480
OFFSET
0,2
COMMENTS
Triangle read by rows. For n >= 0, k >= 0 let
T(n,k) = Sum_{i=k..n} (-1)^(n-i)*binomial(n-k,n-i)*(2i+1)$ where i$ denotes the swinging factorial of i (A056040).
LINKS
Peter Luschny, Swinging Factorial.
M. Z. Spivey and L. L. Steil, The k-Binomial Transforms and the Hankel Transform, J. Integ. Seqs. Vol. 9 (2006), #06.1.1.
EXAMPLE
1
5, 6
19, 24, 30
67, 86, 110, 140
227, 294, 380, 490, 630
751, 978, 1272, 1652, 2142, 2772
2445, 3196, 4174, 5446, 7098, 9240, 12012
MAPLE
For the functions 'DiffTria' and 'swing' see A163770. Computes n rows of the triangle.
a := n -> DiffTria(k->swing(2*k+1), n, true);
MATHEMATICA
sf[n_] := n!/Quotient[n, 2]!^2; t[n_, k_] := Sum[ (-1)^(n-i)*Binomial[n-k, n-i]*sf[2*i+1], {i, k, n}]; Table[t[n, k], {n, 0, 7}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 28 2013 *)
CROSSREFS
Sequence in context: A240400 A031448 A290254 * A056509 A129722 A133608
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Aug 05 2009
STATUS
approved