login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A163606 a(n) = ((3 + 2*sqrt(2))*(3 + sqrt(2))^n + (3 - 2*sqrt(2))*(3 - sqrt(2))^n)/2. 3
3, 13, 57, 251, 1107, 4885, 21561, 95171, 420099, 1854397, 8185689, 36133355, 159500307, 704068357, 3107907993, 13718969459, 60558460803, 267317978605, 1179998646009, 5208766025819, 22992605632851, 101494271616373 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Binomial transform of A048580. Inverse binomial transform of A163604.

For n >= 1, a(n-1) is the number of generalized compositions of n when there are 2^(i-1)+1 different types of i, (i=1,2,...). - Milan Janjic, Sep 24 2010

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (6, -7).

FORMULA

a(n) = 6*a(n-1) - 7*a(n-2) for n > 1; a(0) = 3, a(1) = 13.

G.f.: (3-5*x)/(1-6*x+7*x^2).

E.g.f.: exp(3*x)*( 3*cosh(sqrt(2)*x) + 2*sqrt(2)*sinh(sqrt(2)*x) ). - G. C. Greubel, Jul 29 2017

MATHEMATICA

LinearRecurrence[{6, -7}, {3, 13}, 40] (* Harvey P. Dale, Dec 24 2011 *)

PROG

(MAGMA) Z<x>:= PolynomialRing(Integers()); N<r>:=NumberField(x^2-2); S:=[ ((3+2*r)*(3+r)^n+(3-2*r)*(3-r)^n)/2: n in [0..21] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 07 2009

(PARI) x='x+O('x^50); Vec((3-5*x)/(1-6*x+7*x^2)) \\ G. C. Greubel, Jul 29 2017

CROSSREFS

Cf. A048580, A163604.

Sequence in context: A049086 A010921 A275634 * A115968 A256939 A005827

Adjacent sequences:  A163603 A163604 A163605 * A163607 A163608 A163609

KEYWORD

nonn

AUTHOR

Al Hakanson (hawkuu(AT)gmail.com), Aug 01 2009

EXTENSIONS

Edited and extended beyond a(5) by Klaus Brockhaus, Aug 07 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 4 01:05 EDT 2020. Contains 334808 sequences. (Running on oeis4.)