The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A010921 Shallit sequence S(3,13), a(n)=[ a(n-1)^2/a(n-2)+1 ]. 2
 3, 13, 57, 250, 1097, 4814, 21126, 92711, 406861, 1785505, 7835669, 34386747, 150905861, 662248712, 2906271193, 12754139184, 55971399613, 245629871954, 1077943993063, 4730545364606, 20759946333583, 91104796287932, 399812397069577, 1754572309731352 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Matches the sequence A275634 with g.f. ( 3-2*x-2*x^2 ) / ( 1-5*x+2*x^2+3*x^3 ) for n<=9, but is then different. - R. J. Mathar, Feb 11 2016 LINKS Colin Barker, Table of n, a(n) for n = 0..1000 D. W. Boyd, Some integer sequences related to the Pisot sequences, Acta Arithmetica, 34 (1979), 295-305. D. W. Boyd, Linear recurrence relations for some generalized Pisot sequences, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993. Jeffrey Shallit, Problem B-686, Fib. Quart., 29 (1991), 85. MAPLE A010921 := proc(n)     option remember;     if n <= 1 then         op(n+1, [3, 13]) ;     else         a := procname(n-1)^2/procname(n-2) ;         floor(1+a) ;     end if; end proc: # R. J. Mathar, Feb 11 2016 MATHEMATICA RecurrenceTable[{a[0]==3, a[1]==13, a[n]==Floor[a[n-1]^2/a[n-2]+1]}, a[n], {n, 25}] (* Harvey P. Dale, Oct 24 2011 *) PROG (PARI) A010921(n, a=[3, 13])={for(n=2, if(type(n)=="t_VEC", n[1], n), a=concat(a, a[n]^2\a[n-1]+1)); if(type(n)=="t_VEC", a, a[n+1])} \\ Use A010921([n]) to get the vector [a(0), ..., a(n)] \\ M. F. Hasler, Feb 11 2016 (PARI) pisotS(nmax, a1, a2) = {   a=vector(nmax); a[1]=a1; a[2]=a2;   for(n=3, nmax, a[n] = floor(a[n-1]^2/a[n-2]+1));   a } pisotS(50, 3, 13) \\ Colin Barker, Aug 09 2016 CROSSREFS Cf. A008776, A275634. Sequence in context: A151221 A020515 A049086 * A275634 A163606 A115968 Adjacent sequences:  A010918 A010919 A010920 * A010922 A010923 A010924 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 13:49 EDT 2020. Contains 334626 sequences. (Running on oeis4.)