

A163308


a(n) = 16*a(n1)  59*a(n2) for n > 1; a(0) = 1, a(1) = 9.


3



1, 9, 85, 829, 8249, 83073, 842477, 8578325, 87547057, 894631737, 9148831429, 93598030381, 957787431785, 9802315116081, 100327583381981, 1026904742262917, 10511148456669793, 107590995513204585
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

Binomial transform of A163307. Inverse binomial transform of A163309.


LINKS

G. C. Greubel, Table of n, a(n) for n = 0..985
Index entries for linear recurrences with constant coefficients, signature (16, 59).


FORMULA

a(n) = ((5+sqrt(5))*(8+sqrt(5))^n + (5sqrt(5))*(8sqrt(5))^n)/10.
G.f.: (17*x)/(116*x+59*x^2).
E.g.f.: (1/5)*exp(8*x)*(5*cosh(sqrt(5)*x) + sqrt(5)*sinh(sqrt(5)*x)).  G. C. Greubel, Dec 18 2016


MATHEMATICA

LinearRecurrence[{16, 59}, {1, 9}, 20] (* Harvey P. Dale, Dec 06 2013 *)


PROG

(MAGMA) [ n le 2 select 8*n7 else 16*Self(n1)59*Self(n2): n in [1..18] ];
(PARI) Vec((17*x)/(116*x+59*x^2) + O(x^50)) \\ G. C. Greubel, Dec 18 2016


CROSSREFS

Cf. A163307, A163309.
Sequence in context: A295118 A228417 A015580 * A160112 A108427 A152106
Adjacent sequences: A163305 A163306 A163307 * A163309 A163310 A163311


KEYWORD

nonn


AUTHOR

Klaus Brockhaus, Jul 24 2009


STATUS

approved



