This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A108427 Number of peaks of the form Ud in all paths from (0,0) to (3n,0) that stay in the first quadrant (but may touch the horizontal axis), consisting of steps u=(2,1), U=(1,2), or d=(1,-1). 3
 1, 9, 85, 833, 8361, 85305, 880685, 9173505, 96220561, 1014889769, 10753517061, 114375683009, 1220435354425, 13058529727833, 140059477112925, 1505357362548737, 16209464357137953, 174827809500822345, 1888383038494338485, 20424130116241366593, 221164921352046545609, 2397512484385887298681 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..200 Emeric Deutsch, Problem 10658, American Math. Monthly, 107, 2000, 368-370. FORMULA a(n) = (1/n)*Sum_{k=0..n} k*binomial(n, k)*binomial(3n-k, n-1). Recurrence: 9*n*(2*n-3)*a(n) = (202*n^2 - 414*n + 185)*a(n-1) - (26*n^2 - 175*n + 255)*a(n-2) - 2*(n-3)*(2*n-5)*a(n-3), for n>3. - Vaclav Kotesovec, Oct 17 2012 a(n) ~ sqrt(30*sqrt(5)-50)*((11+5*sqrt(5))/2)^n/(20*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 17 2012 G.f.: A(x) = 1/2*(x*B'(x)/B(x)-1), where B(x) satisfies B(x) = x*((1-2*B(x))/(2*(1-4*B(x))) + 1/(2*sqrt(1-4*B(x)))). - Vladimir Kruchinin, Oct 06 2015 a(n) = binomial(3*n-1, n-1)*hypergeom([1-n, -2*n], [1-3*n], -1). - Peter Luschny, Oct 06 2015 a(n) = hypergeom([-n, n, -n + 1], [1/2,  1], 1). - Peter Luschny, Mar 14 2018 a(n) = P(n-1, n+1, 0, 3), where P is the Jacobi Polynomial. - Richard Turk, Jun 25 2018 EXAMPLE a(2)=9 because we have ud(Ud)d, u(Ud)dd, (Ud)dud, (Ud)d(Ud)d, (Ud)udd, (Ud)(Ud)dd, U(Ud)ddd (the peaks of the form Ud shown between parentheses). G.f. = x + 9*x^2 + 85*x^3 + 833*x^4 + 8361*x^5 + 85305*x^6 + 880685*x^7 + ... - Michael Somos, Jul 01 2018 MAPLE seq(add(k*binomial(n, k)*binomial(3*n-k, n-1)/n, k=0..n), n=1..22); a := n -> binomial(3*n-1, n-1)*hypergeom([1-n, -2*n], [1-3* n], -1); seq(round(evalf(a(n), 32)), n=1..22); # Peter Luschny, Oct 06 2015 MATHEMATICA Table[1/n*Sum[k*Binomial[n, k]*Binomial[3n - k, n-1], {k, 0, n}], {n, 1, 20}] (* Vaclav Kotesovec, Oct 17 2012 *) a[n_] :=  HypergeometricPFQ[{-n, n, -n + 1}, {1/2, 1}, 1]; Table[a[n], {n, 1, 22}] (* Peter Luschny, Mar 14 2018 *) a[ n_] := JacobiP[n - 1, n + 1, 0, 3]; (* Michael Somos, Jul 01 2018 *) PROG (PARI) a(n) = (1/n)*sum(k=0, n, k*binomial(n, k)*binomial(3*n-k, n-1)); \\ Joerg Arndt, May 15 2013 (Maxima) G(z):=z*((2/3)*sqrt((z+3)/z)*sin((1/3)*asin(sqrt(z)*(z+18) / (z+3)^(3/2)))+2/3); taylor(diff(G(z), z, 1)/G(z)-1/z, z, 0, 20); /* Vladimir Kruchinin, Oct 06 2015 */ CROSSREFS Cf. A027307, A108426. Sequence in context: A015580 A163308 A160112 * A152106 A142982 A218136 Adjacent sequences:  A108424 A108425 A108426 * A108428 A108429 A108430 KEYWORD nonn AUTHOR Emeric Deutsch, Jun 03 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 16 07:30 EDT 2019. Contains 328051 sequences. (Running on oeis4.)