login
A161240
Number of partitions of n into central binomial coefficients A001405.
1
1, 2, 3, 4, 5, 8, 9, 12, 15, 19, 22, 29, 33, 40, 47, 56, 63, 76, 85, 100, 113, 131, 146, 169, 187, 214, 237, 268, 295, 334, 365, 410, 449, 499, 545, 606, 657, 727, 789, 868, 940, 1033, 1114, 1219, 1315, 1433, 1542, 1678, 1800, 1954, 2095, 2266, 2426, 2619, 2798
OFFSET
1,2
LINKS
FORMULA
G.f.: 1/Product_{j>=1} (1 - x*binomial(j, floor(j/2))). - Emeric Deutsch, Jun 21 2009
EXAMPLE
a(6)=8 because we have 6, 33, 321, 3111, 222, 2211, 21111, and 111111. - Emeric Deutsch, Jun 21 2009
MAPLE
g := 1/(product(1-x^binomial(j, floor((1/2)*j)), j = 1 .. 15)): gser := series(g, x = 0, 63): seq(coeff(gser, x, n), n = 1 .. 55); # Emeric Deutsch, Jun 21 2009
CROSSREFS
Sequence in context: A029000 A042962 A027584 * A165652 A191851 A063678
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jun 06 2009
STATUS
approved