login
A027584
Sequence satisfies T^2(a)=a, where T is defined below.
1
1, 2, 3, 4, 5, 8, 9, 12, 15, 19, 22, 28, 33, 39, 46, 54, 62, 72, 83, 94, 108, 121, 138, 154, 173, 193, 217, 239, 267, 295, 326, 359, 397, 435, 477, 525, 572, 625, 684, 745, 809, 883, 956, 1038, 1126, 1218, 1316, 1424, 1536, 1655, 1785, 1920, 2065, 2220, 2382
OFFSET
0,2
REFERENCES
S. Viswanath (student, Dept. Math, Indian Inst. Technology, Kanpur) A Note on Partition Eigensequences, preprint, Nov 15 1996.
LINKS
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
Sean A. Irvine, Java program (github)
FORMULA
Define T:a->b by: given a1<=a2<=..., let b(n) = number of ways of partitioning n into parts from a1, a2, ... such that even parts do not occur more than once.
CROSSREFS
Sequence in context: A008749 A029000 A042962 * A161240 A165652 A191851
KEYWORD
nonn,eigen
AUTHOR
EXTENSIONS
More terms from Sean A. Irvine, Nov 09 2019
STATUS
approved