login
A160764
a(n) = n-th squarefree number minus round(n*zeta(2)).
2
-1, -1, -2, -2, -2, -3, -2, -2, -2, -2, -3, -3, -2, -2, -3, -3, -2, -1, -1, -2, -2, -2, -3, -2, -3, -4, -3, -4, -5, -3, -4, -2, -1, -1, -1, -1, -2, -2, -2, -1, -1, -2, -2, -2, -3, -3, -3, -2, -3, -3, -2, -3, -2, -3, -3, -3, -3, -2, -3, -4, -3, -1, -2, -2, -2, -3, -3, -3, -4
OFFSET
1,3
COMMENTS
Race between the n-th squarefree number and round(n*zeta(2)).
LINKS
FORMULA
Since zeta(2) = Sum_{i>=1}, 1/(i^2) = (Pi^2)/6, we get:
a(n) = A005117(n) - n * Sum_{i>=1}, 1/(i^2) = O(sqrt(n));
a(n) = A005117(n) - n * (Pi^2)/6 = O(sqrt(n)).
CROSSREFS
Cf. A005117 Squarefree numbers.
Cf. A013929 Nonsquarefree numbers.
Cf. A013928 Number of squarefree numbers < n.
Cf. A158819 Number of squarefree numbers <= n minus round(n/zeta(2)).
Sequence in context: A175064 A349956 A104564 * A156384 A306249 A064656
KEYWORD
sign
AUTHOR
Daniel Forgues, May 26 2009
STATUS
approved