login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A158819 (Number of squarefree numbers <= n) minus round(n/zeta(2)). 3
0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 2, 2, 2, 2, 1, 2, 1, 1, 2, 2, 2, 2, 1, 1, 0, 1, 1, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,7

COMMENTS

Race between the number of squarefree numbers and round(n/zeta(2)).

First term < 0: a(172) = -1.

REFERENCES

G. H. Hardy and S. Ramanujan, The normal number of prime factors of a number n, Q. J. Math., 48 (1917), pp. 76-92.

G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth edition (1979), Clarendon Press, pp. 269-270.

LINKS

Daniel Forgues, Table of n, a(n) for n=1..100000

A. Granville, ABC means we can count squarefree

FORMULA

Since zeta(2) = Sum_{i>=1} 1/(i^2) = (Pi^2)/6, we get:

a(n) = A013928(n+1) - n/Sum_{i>=1} 1/(i^2) = O(sqrt(n));

a(n) = A013928(n+1) - 6*n/(Pi^2) = O(sqrt(n)).

CROSSREFS

Cf. A008966 1 if n is squarefree, else 0.

Cf. A013928 Number of squarefree numbers < n.

Cf. A100112 If n is the k-th squarefree number then k else 0.

Cf. A057627 Number of nonsquarefree numbers not exceeding n.

Cf. A005117 Squarefree numbers.

Cf. A013929 Nonsquarefree numbers.

Sequence in context: A257679 A031214 A056059 * A031279 A124778 A037831

Adjacent sequences:  A158816 A158817 A158818 * A158820 A158821 A158822

KEYWORD

sign

AUTHOR

Daniel Forgues, Mar 27 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 11 03:18 EST 2016. Contains 279034 sequences.