login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158819
(Number of squarefree numbers <= n) minus round(n/zeta(2)).
3
0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 2, 2, 2, 2, 1, 2, 1, 1, 2, 2, 2, 2, 1, 1, 0, 1, 1, 1, 1, 1
OFFSET
1,7
COMMENTS
Race between the number of squarefree numbers and round(n/zeta(2)).
First term < 0: a(172) = -1.
REFERENCES
G. H. Hardy and S. Ramanujan, The normal number of prime factors of a number n, Q. J. Math., 48 (1917), pp. 76-92.
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth edition (1979), Clarendon Press, pp. 269-270.
FORMULA
Since zeta(2) = Sum_{i>=1} 1/(i^2) = (Pi^2)/6, we get:
a(n) = A013928(n+1) - n/Sum_{i>=1} 1/(i^2) = O(sqrt(n));
a(n) = A013928(n+1) - 6*n/(Pi^2) = O(sqrt(n)).
CROSSREFS
Cf. A008966 1 if n is squarefree, else 0.
Cf. A013928 Number of squarefree numbers < n.
Cf. A100112 If n is the k-th squarefree number then k else 0.
Cf. A057627 Number of nonsquarefree numbers not exceeding n.
Cf. A005117 Squarefree numbers.
Cf. A013929 Nonsquarefree numbers.
Sequence in context: A357900 A357732 A356428 * A031279 A124778 A037831
KEYWORD
sign
AUTHOR
Daniel Forgues, Mar 27 2009
STATUS
approved