login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A158819 (Number of squarefree numbers <= n) minus round(n/zeta(2)). 3
0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 2, 2, 2, 2, 1, 2, 1, 1, 2, 2, 2, 2, 1, 1, 0, 1, 1, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,7

COMMENTS

Race between the number of squarefree numbers and round(n/zeta(2)).

REFERENCES

G. H. Hardy and S. Ramanujan, The normal number of prime factors of a number n, Q. J. Math., 48 (1917), pp. 76-92.

G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth edition (1979), Clarendon Press, pp. 269-270.

LINKS

Daniel Forgues, Table of n, a(n) for n=1..100000

A. Granville, ABC means we can count squarefree

FORMULA

Since zeta(2) = Sum[{i, 1, inf}, {1/(i^2)}] = (pi^2)/6, we get:

a(n) = A013928(n+1) - n/Sum[{i, 1, inf}, {1/(i^2)}] = O(sqrt(n))

a(n) = A013928(n+1) - 6*n/(pi^2) = O(sqrt(n))

CROSSREFS

Cf. A008966 1 if n is squarefree, else 0.

Cf. A013928 Number of squarefree numbers < n.

Cf. A100112 If n is the k-th squarefree number then k else 0.

Cf. A057627 Number of non-squarefree numbers not exceeding n.

Cf. A005117 Squarefree numbers.

Cf. A013929 Not squarefree numbers.

Sequence in context: A238015 A031214 A056059 * A031279 A124778 A037831

Adjacent sequences:  A158816 A158817 A158818 * A158820 A158821 A158822

KEYWORD

nonn

AUTHOR

Daniel Forgues, Mar 27 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 20 23:03 EST 2014. Contains 252290 sequences.