The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A160663 Number of distinct sums that one can obtain by adding two squares among the n first ones. 4
2, 5, 9, 14, 19, 26, 33, 41, 50, 60, 70, 82, 93, 105, 119, 134, 147, 164, 179, 197, 215, 234, 251, 272, 293, 314, 336, 359, 381, 407, 430, 456, 483, 507, 535, 566, 594, 623, 652, 686, 714, 748, 780, 812, 849, 883, 918, 956, 992, 1030, 1068, 1107, 1141, 1181 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Essentially the same as A047800: a(n) = A047800(n) - 1.
Let A be the set of the n first squares (1,4,9,...,n^2). Let A+A be the corresponding sumset (= {a,b,a+b where (a,b) in A^2}). That very sequence describes the number of elements of A+A, relatively to n.
a(n-1) is the number of distinct positive distances on an n X n pegboard. What is its asymptotic growth? Can it be efficiently computed for large n? - Charles R Greathouse IV, Jun 13 2013
An upper bound is a(n) <= A102548(2n^2) << n^2/log n. - Charles R Greathouse IV, Jan 16 2023
REFERENCES
Melvyn B. Nathanson (1996). "Additive Number Theory: the Classical Bases" Graduate Texts in Mathematics. 164. Springer-Verlag. p. 192. ISBN 0-387-94656-X.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (first 1000 terms from Alois P. Heinz)
L. G. Schnirelmann, Über additive Eigenschaften von Zahlen, Math. Ann. 107 (1933) 649-690.
L. G. Schnirelmann, Über additive Eigenschaften von Zahlen, Math. Ann. 107 (1933) 649-690. doi:10.1007/BF01448914.
Samuel S. Wagstaff, Jr., The Schnirelmann density of the sums of three squares, Proc. Amer. Math. Soc. 52 (1975), 1-7.
Wikipedia, Edmund Landau
FORMULA
a(n) = card(A+A) where A={k^2} k=1..n and A+A = {a,b,a+b where (a,b) in A^2}.
Trivially 2n <= a(n) <= n(n+1)/2. - Charles R Greathouse IV, Oct 30 2015
a(n) << n^2/sqrt(log n) [see A000404]. - Charles R Greathouse IV, Oct 30 2015
EXAMPLE
For n = 3, A = {1,4,9}, A+A = {1,4,9} U {2,5,10,8,13,18} thus A+A = {1,2,4,5,8,9,10,13,18}, and hence card(A+A) = 9; a(3) = 9.
MAPLE
a:= proc(n) local A, i, j; A:= [i^2$i=1..n]; nops([{A[], seq (seq (A[i]+A[j], j=1..i), i=1..nops(A))}[]]) end: seq (a(n), n=1..60); # Alois P. Heinz, Jun 16 2009
MATHEMATICA
a[n_] := (Table[i^2 + j^2, {i, 0, n}, {j, i, n}] // Flatten // Union // Length) - 1; Array[a, 60] (* Jean-François Alcover, May 25 2018 *)
PROG
(Python)
def a(n):
SUM, SQR = set(), set(x**2 for x in range(1, n + 1))
for i in SQR:
SUM.add(i)
for j in SQR: SUM.add(i + j)
return len(SUM)
# Romain CARRE (romain.carre.2008(AT)enseirb.fr), Apr 16 2010
(PARI) a(n)=n++; #vecsort(vector(n^2, i, ((i-1)\n)^2+((i-1)%n)^2), , 8)-1 \\ Charles R Greathouse IV, Jun 13 2013
(PARI) a(n)=my(u=vector(n, i, i^2), v=List(u)); for(i=1, n, for(j=1, i, listput(v, u[i]+u[j]))); u=0; #Set(v) \\ Charles R Greathouse IV, Nov 18 2022
(PARI) first(n)=my(v=vector(n), u=[]); for(k=1, n, my(k2=k^2, w=vector(k, i, i^2+k2)); w=setunion(w, [k2]); u=setunion(u, w); v[k]=#u); v \\ Charles R Greathouse IV, Nov 18 2022
CROSSREFS
Sequence in context: A266899 A112265 A025281 * A024201 A110443 A130029
KEYWORD
nonn
AUTHOR
Romain CARRE (romain.carre.2008(AT)enseirb.fr), May 22 2009
EXTENSIONS
More terms from Alois P. Heinz, Jun 16 2009
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 14 23:22 EDT 2024. Contains 372535 sequences. (Running on oeis4.)