This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A047800 Number of different values of i^2 + j^2 for i,j in [0, n]. 7
 1, 3, 6, 10, 15, 20, 27, 34, 42, 51, 61, 71, 83, 94, 106, 120, 135, 148, 165, 180, 198, 216, 235, 252, 273, 294, 315, 337, 360, 382, 408, 431, 457, 484, 508, 536, 567, 595, 624, 653, 687, 715, 749, 781, 813, 850, 884, 919, 957, 993, 1031, 1069, 1108, 1142 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n-1) is the number of distinct distances on an n X n pegboard. What is its asymptotic growth? Can it be efficiently computed for large n? - Charles R Greathouse IV, Jun 13 2013 Conjecture (after Landau and Erdős): a(n) ~ c * n^2 / sqrt(log(n)), where c = 0.79... . - Vaclav Kotesovec, Mar 10 2016 LINKS T. D. Noe and Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..500 from T. D. Noe) Erdős, P., On sets of distances of n points, American Mathematical Monthly 53, pp. 248-250 (1946). Vaclav Kotesovec, Graph - The asymptotic ratio Edmund Landau, Handbuch der Lehre von der Verteilung der Primzahlen, vol. 2, Leipzig B. G. Teubner, 1909, p. 643. MATHEMATICA Table[ Length@Union[ Flatten[ Table[ i^2+j^2, {i, 0, n}, {j, 0, n} ] ] ], {n, 0, 49} ] nmax = 100; sq = Table[i^2 + j^2, {i, 0, nmax}, {j, 0, nmax}]; Table[Length@Union[Flatten[Table[Take[sq[[j]], n + 1], {j, 1, n + 1}]]], {n, 0, nmax}] (* Vaclav Kotesovec, Mar 09 2016 *) PROG (Haskell) import Data.List (nub) a047800 n = length \$ nub [i^2 + j^2 | i <- [0..n], j <- [i..n]] -- Reinhard Zumkeller, Oct 03 2012 (PARI) a(n)=#vecsort(vector(n^2, i, ((i-1)\n)^2+((i-1)%n)^2), , 8) \\ Charles R Greathouse IV, Jun 13 2013 CROSSREFS Cf. A034966, A047801, A160663. Sequence in context: A027920 A033438 A037452 * A109443 A138777 A096895 Adjacent sequences:  A047797 A047798 A047799 * A047801 A047802 A047803 KEYWORD nonn,easy,nice AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.