login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A047800 Number of different values of i^2 + j^2 for i,j in [0, n]. 7
1, 3, 6, 10, 15, 20, 27, 34, 42, 51, 61, 71, 83, 94, 106, 120, 135, 148, 165, 180, 198, 216, 235, 252, 273, 294, 315, 337, 360, 382, 408, 431, 457, 484, 508, 536, 567, 595, 624, 653, 687, 715, 749, 781, 813, 850, 884, 919, 957, 993, 1031, 1069, 1108, 1142 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n-1) is the number of distinct distances on an n X n pegboard. What is its asymptotic growth? Can it be efficiently computed for large n? - Charles R Greathouse IV, Jun 13 2013

Conjecture (after Landau and Erdős): a(n) ~ c * n^2 / sqrt(log(n)), where c = 0.79... . - Vaclav Kotesovec, Mar 10 2016

LINKS

T. D. Noe and Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..500 from T. D. Noe)

Erdős, P., On sets of distances of n points, American Mathematical Monthly 53, pp. 248-250 (1946).

Vaclav Kotesovec, Graph - The asymptotic ratio

Edmund Landau, Handbuch der Lehre von der Verteilung der Primzahlen, vol. 2, Leipzig B. G. Teubner, 1909, p. 643.

MATHEMATICA

Table[ Length@Union[ Flatten[ Table[ i^2+j^2, {i, 0, n}, {j, 0, n} ] ] ], {n, 0, 49} ]

nmax = 100; sq = Table[i^2 + j^2, {i, 0, nmax}, {j, 0, nmax}]; Table[Length@Union[Flatten[Table[Take[sq[[j]], n + 1], {j, 1, n + 1}]]], {n, 0, nmax}] (* Vaclav Kotesovec, Mar 09 2016 *)

PROG

(Haskell)

import Data.List (nub)

a047800 n = length $ nub [i^2 + j^2 | i <- [0..n], j <- [i..n]]

-- Reinhard Zumkeller, Oct 03 2012

(PARI) a(n)=#vecsort(vector(n^2, i, ((i-1)\n)^2+((i-1)%n)^2), , 8) \\ Charles R Greathouse IV, Jun 13 2013

CROSSREFS

Cf. A034966, A047801, A160663.

Sequence in context: A027920 A033438 A037452 * A109443 A138777 A096895

Adjacent sequences:  A047797 A047798 A047799 * A047801 A047802 A047803

KEYWORD

nonn,easy,nice

AUTHOR

Wouter Meeussen

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 23 20:23 EST 2017. Contains 295141 sequences.