login
A160510
Decimal expansion of exp(Pi/4).
2
2, 1, 9, 3, 2, 8, 0, 0, 5, 0, 7, 3, 8, 0, 1, 5, 4, 5, 6, 5, 5, 9, 7, 6, 9, 6, 5, 9, 2, 7, 8, 7, 3, 8, 2, 2, 3, 4, 6, 1, 6, 3, 7, 6, 4, 1, 9, 9, 4, 2, 7, 2, 3, 3, 4, 8, 5, 8, 0, 1, 5, 9, 1, 8, 6, 5, 7, 0, 2, 6, 8, 6, 4, 1, 8, 9, 2, 3, 6, 9, 3, 4, 1, 2, 6, 5, 2, 2, 8, 1, 2, 5, 7, 8, 1, 6, 9, 4, 0, 4, 7, 1, 1, 6, 7
OFFSET
1,1
COMMENTS
Identified by Knuth as one of those "quantities that are frequently used in standard subroutines and in analysis of computer programs." - Alonso del Arte, Feb 03 2012
REFERENCES
D. E. Knuth, The Art Of Computer Programming, Vol 1: Fundamental Algorithms, Addison-Wesley, 1968.
LINKS
Grant Sanderson and Brady Haran, Darts in Higher Dimensions, Numberphile video (2019)
EXAMPLE
Exp(Pi/4) = 2.1932800507380154565597696592787382234616+ according to Knuth, appendix B, table 1.
MAPLE
evalf(exp(Pi/4), 125); # Alois P. Heinz, Nov 17 2019
MATHEMATICA
RealDigits[ E^(Pi/4), 10, 111][[1]] (* Robert G. Wilson v, May 29 2009 *)
PROG
(PARI) exp(Pi/4) \\ Charles R Greathouse IV, Jan 04 2016
CROSSREFS
Cf. A000796, A320428 (continued fraction), A329912 (Engel expansion).
Sequence in context: A369919 A355881 A095888 * A298738 A124776 A099285
KEYWORD
cons,nonn
AUTHOR
Hagen von Eitzen, May 16 2009
EXTENSIONS
More terms from Robert G. Wilson v, May 29 2009
STATUS
approved