OFFSET
0,3
COMMENTS
Partial sums of A045944. - Vladimir Joseph Stephan Orlovsky, Jun 25 2009
The sum of the n-1 numbers between n^2 and n*(n+1) = a(n). - J. M. Bergot, Apr 15 2013
Use the terms in A061885 to form the antidiagonals for an array. The antidiagonals begin: 0;2,3;6,7,8;12,13,14,15;20,21,22,23,24,25. The sum of the terms in these antidiagonals = a(n)for n > 0. - J. M. Bergot, Jul 08 2013
a(n) is the sum of the n numbers strictly between n^2-n-1 and n^2. - Charlie Marion, Feb 21 2020
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Milan Janjic and B. Petkovic, A counting function, arXiv preprint arXiv:1301.4550 [math.CO], 2013.
Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
FORMULA
a(n) = (2*n^3 - n^2 - n)/2. - Vincenzo Librandi, Dec 12 2010; edited by Klaus Brockhaus, Dec 12 2010
From Chai Wah Wu, Aug 03 2022: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 3.
G.f.: x^2*(5 + x)/(1 - x)^4. (End)
E.g.f.: (x^2/2)*(5 + 2*x)*exp(x). - G. C. Greubel, Oct 14 2023
EXAMPLE
a(4) = 4^3 - 4*5/2 = 64 - 10 = 54.
MATHEMATICA
Table[n^3 - n*(n+1)/2, {n, 0, 40}] (* Vladimir Joseph Stephan Orlovsky, Jun 25 2009 *)
PROG
(Magma) [ n^3-n*(n+1)/2: n in [0..50] ];
(PARI) a(n)=n^3-n*(n+1)/2 \\ Charles R Greathouse IV, Oct 18 2022
(SageMath) [n^3 -binomial(n+1, 2) for n in range(41)] # G. C. Greubel, Oct 14 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Gil Broussard, May 11 2009
EXTENSIONS
Definition clarified and offset changed from 1 to 0 by Klaus Brockhaus, Dec 12 2010
STATUS
approved