login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160378
a(n) = n^3 - n*(n+1)/2.
9
0, 0, 5, 21, 54, 110, 195, 315, 476, 684, 945, 1265, 1650, 2106, 2639, 3255, 3960, 4760, 5661, 6669, 7790, 9030, 10395, 11891, 13524, 15300, 17225, 19305, 21546, 23954, 26535, 29295, 32240, 35376, 38709, 42245, 45990, 49950, 54131, 58539
OFFSET
0,3
COMMENTS
n-th cube (A000578(n)) minus n-th triangular number (A000217(n)).
Partial sums of A045944. - Vladimir Joseph Stephan Orlovsky, Jun 25 2009
The sum of the n-1 numbers between n^2 and n*(n+1) = a(n). - J. M. Bergot, Apr 15 2013
Use the terms in A061885 to form the antidiagonals for an array. The antidiagonals begin: 0;2,3;6,7,8;12,13,14,15;20,21,22,23,24,25. The sum of the terms in these antidiagonals = a(n)for n > 0. - J. M. Bergot, Jul 08 2013
a(n) is the sum of the n numbers strictly between n^2-n-1 and n^2. - Charlie Marion, Feb 21 2020
LINKS
Milan Janjic and B. Petkovic, A counting function, arXiv preprint arXiv:1301.4550 [math.CO], 2013.
FORMULA
a(n) = (2*n^3 - n^2 - n)/2. - Vincenzo Librandi, Dec 12 2010; edited by Klaus Brockhaus, Dec 12 2010
From Chai Wah Wu, Aug 03 2022: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 3.
G.f.: x^2*(5 + x)/(1 - x)^4. (End)
E.g.f.: (x^2/2)*(5 + 2*x)*exp(x). - G. C. Greubel, Oct 14 2023
EXAMPLE
a(4) = 4^3 - 4*5/2 = 64 - 10 = 54.
MATHEMATICA
Table[n^3 - n*(n+1)/2, {n, 0, 40}] (* Vladimir Joseph Stephan Orlovsky, Jun 25 2009 *)
PROG
(Magma) [ n^3-n*(n+1)/2: n in [0..50] ];
(PARI) a(n)=n^3-n*(n+1)/2 \\ Charles R Greathouse IV, Oct 18 2022
(SageMath) [n^3 -binomial(n+1, 2) for n in range(41)] # G. C. Greubel, Oct 14 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Gil Broussard, May 11 2009
EXTENSIONS
Definition clarified and offset changed from 1 to 0 by Klaus Brockhaus, Dec 12 2010
STATUS
approved