login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A160357 Sign of first differences of Recamán's sequence A005132. 10
1, 1, 1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

T. D. Noe, Table of n, a(n) for n = 0..10000

FORMULA

a(n) = sign(A005132(n)-A005132(n-1)) = sign(A160356(n)) = (-1)^A160351(n) = -(-1)^A076213(n-1).

a(n) = (A005132(n)-A005132(n-1))/n. - N. J. A. Sloane, Jul 15 2011

A160357 = chi_A057165 - chi_A057166, where chi_A denotes the characteristic function of (the set of values of) A.

MAPLE

A160357 := proc(n)

sign( A005132(n)-A005132(n-1)) ;

end proc: # R. J. Mathar, Apr 01 2012

MATHEMATICA

f[s_List] := Module[{a = s[[-1]], n = Length[s]}, Append[s, If[a > n && FreeQ[s, a - n], a - n, a + n]]];

Nest[f, {0}, 100] // Differences // Sign (* Jean-François Alcover, Apr 19 2020, using Robert G. Wilson v's code for A005132 *)

CROSSREFS

Cf. A005132, A119632.

Sequence in context: A212157 A131554 A153881 * A186039 A332433 A057077

Adjacent sequences: A160354 A160355 A160356 * A160358 A160359 A160360

KEYWORD

sign

AUTHOR

M. F. Hasler, Jun 03 2009

EXTENSIONS

a(0)=1 added by N. J. A. Sloane, May 01 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 4 23:05 EST 2022. Contains 358572 sequences. (Running on oeis4.)