OFFSET
0,3
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..417
FORMULA
From G. C. Greubel, Sep 24 2018: (Start)
a(n) = 14^n * Hermite(n, 1/28).
E.g.f.: exp(x - 196*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(1/14)^(n-2*k)/(k!*(n-2*k)!)). (End)
EXAMPLE
Numerators of 1, 1/14, -391/196, -1175/2744, 458641/38416, ...
MATHEMATICA
Table[14^n*HermiteH[n, 1/28], {n, 0, 30}] (* G. C. Greubel, Sep 24 2018 *)
PROG
(PARI) a(n)=numerator(polhermite(n, 1/28)) \\ Charles R Greathouse IV, Jan 29 2016
(PARI) x='x+O('x^30); Vec(serlaplace(exp(x - 196*x^2))) \\ G. C. Greubel, Sep 24 2018
(Magma) [Numerator((&+[(-1)^k*Factorial(n)*(1/14)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Sep 24 2018
CROSSREFS
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Nov 12 2009
STATUS
approved