login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A159721
Number of permutations of 3 indistinguishable copies of 1..n arranged in a circle with exactly 1 local maximum.
12
6, 36, 192, 960, 4608, 21504, 98304, 442368, 1966080, 8650752, 37748736, 163577856, 704643072, 3019898880, 12884901888, 54760833024, 231928233984, 979252543488, 4123168604160, 17317308137472, 72567767433216, 303465209266176
OFFSET
2,1
FORMULA
a(n) = (copies*n)*(copies+1)^(n-2), here: copies = 3.
Conjectures from Colin Barker, Mar 23 2018: (Start)
G.f.: 6*x*(1 - 2*x) / (1 - 4*x)^2.
a(n) = 3*4^(n-1)*(n+1).
a(n) = 8*a(n-1) - 16*a(n-2) for n>3. (End)
E.g.f.: 3*x*exp(4*x)/4. - G. C. Greubel, Jun 01 2018
From Amiram Eldar, May 16 2022: (Start)
Sum_{n>=2} 1/a(n) = (16/3)*log(4/3) - 3/2.
Sum_{n>=2} (-1)^n/a(n) = (16/3)*log(5/4) - 7/6. (End)
MATHEMATICA
LinearRecurrence[{8, -16}, {6, 36}, 30] (* or *) Table[3*n*4^(n-2), {n, 2, 30}] (* G. C. Greubel, Jun 01 2018 *)
PROG
(PARI) for(n=2, 30, print1(3*n*4^(n-2), ", ")) \\ G. C. Greubel, Jun 01 2018
(Magma) [3*n*4^(n-2): n in [2..30]]; // G. C. Greubel, Jun 01 2018
KEYWORD
nonn,easy
AUTHOR
R. H. Hardin, Apr 20 2009
STATUS
approved