OFFSET
2,1
LINKS
R. H. Hardin, Table of n, a(n) for n = 2..100
Index entries for linear recurrences with constant coefficients, signature (10,-25).
FORMULA
a(n) = (4*n)*(4+1)^(n-2).
From Colin Barker, Mar 23 2018: (Start)
G.f.: 4*x^2*(2 - 5*x) / (1 - 5*x)^2.
a(n) = 10*a(n-1) - 25*a(n-2) for n>3. (End)
E.g.f.: 4*x*exp(5*x)/5. - G. C. Greubel, Jun 01 2018
From Amiram Eldar, May 16 2022: (Start)
Sum_{n>=2} 1/a(n) = (25/4)*log(5/4) - 5/4.
Sum_{n>=2} (-1)^n/a(n) = 5/4 - (25/4)*log(6/5). (End)
MATHEMATICA
LinearRecurrence[{10, -25}, {8, 60}, 30] (* or *) Table[4*n*5^(n-2), {n, 2, 30}] (* G. C. Greubel, Jun 01 2018 *)
PROG
(PARI) for(n=2, 30, print1(4*n*5^(n-2) , ", ")) \\ G. C. Greubel, Jun 01 2018
(Magma) [ 4*n*5^(n-2) : n in [2..30]]; // G. C. Greubel, Jun 01 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
R. H. Hardin, Apr 20 2009
STATUS
approved